Contents

The Geodise OptionsMatlab Toolbox ... 1
1 Introduction .. 6
2 Installing OptionsMatlab .. 9
 2.1 Obtain a Gendat license file ... 9
 2.2 Add OptionsMatlab to the Matlab search path ... 9
 2.3 View the documentation ... 10
3 OptionsMatlab Tutorial ... 11
 3.1 Create a input structure ... 11
 3.2 Run the search .. 12
 3.3 View the search histories .. 13
 3.4 Build and search a Response Surface Model .. 13
4 Function Reference .. 15
 Banana problem .. 15
 Beam problem ... 17
 Bump problem ... 19
 optimisationAppendDataPoints .. 21
 optimisationCropDataPoints .. 25
 optimisationReplaceDataPoints ... 27
 optimisationDigest .. 30
 optimisationHistory ... 32
 optimisationSampleRSM .. 34
 optimisationSearchTrace .. 39
 optimisationTerrain .. 42
 optimisationTestSuite .. 44
 optimisationTestSuiteComb .. 44
 optimisationTestSuiteUncon .. 44
 optimisationTestSuiteSPM ... 45
 optimisationTilePlot ... 50
 optimisationTrace .. 55
 OptionsMatlab ... 57
 optjob ... 67
 optjobparallel ... 70
 optjobparallel2 ... 72
 optum1 ... 74
 Peaks4d problem .. 76
5 Frequently Asked Questions ... 78
5.1 Why does Matlab crash when I call OptionsMatlab?78
5.2 How do I specify the search method? ..78
5.3 How do I run a Design of Experiments? ..80
5.4 How do I build a Response Surface Model?81
5.5 How do I plot my Response Surface Model?82
5.6 How do I generate Design of Experiment update points?83
5.7 How do I define an unconstrained optimisation?85
5.8 How do I write my own objective and constraint functions?85
5.9 How do I evaluate a combined objective and constraint function? ..86
5.10 Can OptionsMatlab calculate function evaluations in parallel?87
5.11 How do I tune the hyper-parameters for a stochastic process model RSM? 89
5.12 Can I checkpoint the progress of an optimisation?92
5.13 How do I pass Matlab variables to my objective function?93
5.14 How do I define discrete design variables?93
5.15 How do I restart a Genetic Algorithm? ...95
5.16 What is the meaning of the optional control parameters?97
5.17 How do I deal with failed calculations when constructing a response surface model? 107
5.18 How do I build and evaluate a RSM faster?108
6 OptionsMatlab Examples ..109
 6.1 DoE Direct search ...109
 6.2 RSM returning update points ..111
 6.3 DoE evaluating candidate points ..111
 6.4 RSM using candidate points ..112
 6.5 Direct search with checkpointing ...113
 6.6 Parallel job submission with userdata114
 6.7 Hyper-parameter tuning ...116
 6.8 User-defined sequential optimiser ..116
 6.9 Sample a Response Surface Model ...117
 6.10 Build a stochastic process model RSM with quick tuning118
 6.11 Search a tuned stochastic process model RSM119
 6.12 Search the root mean square error of a tuned stochastic process model RSM 120
 6.13 Search the expected improvement of a tuned stochastic process model RSM 123
 6.14 Search the probability of improvement of a tuned stochastic process model RSM 124
 6.15 Search the constrained expected improvement of a tuned stochastic process model RSM 125
model RSM ..125

6.16 Search the constrained feasibility of improvement of a tuned stochastic process model RSM ...127

7 References ..130
1 Introduction

OptionsMatlab integrates the Options design exploration and optimization package [1] into the Matlab environment [2]. The advantages of this approach include; the potential to rapidly prototype and debug objective and constraint functions, and the ability to directly leverage the functionality available within the Matlab environment. Matlab provides data analysis and visualisation capabilities. Additional functionality is available from a variety of toolboxes, including the Geodise toolboxes for Grid-enabled computational and data management [3].

OptionsMatlab provides access to all of the design search and optimisation algorithms within the Options package whilst retaining the maximum flexibility. Users define the objective and constraint functions that describe their problem as Matlab functions. These functions can therefore include interpreted Matlab, compiled MEX functions, or callbacks to external applications or to the Grid. The modular structure of OptionsMatlab is shown by Figure 1.

![Figure 1 The modular structure of OptionsMatlab.](image)

OptionsMatlab is invoked by calling the Matlab function `OptionsMatlab`. An input structure describes the user’s problem, and configures the design search and optimisation algorithm to be used. Additionally a large number of optional fields may be used to adjust the Options control parameters. The results are returned to the Matlab workspace in an output structure.
The usage of OptionsMatlab differs from the original Options interface. A programme of design search and optimisation is based upon a sequence of invocations of the OptionsMatlab function from the Matlab workspace. By comparison the Options interface supports a number of operations upon a data-set managed by the internal Options database. OptionsMatlab can be used to perform operations upon the results of a previous optimisation, such as building a Response Surface Model, by passing the results as a second input argument.

The modular structure of OptionsMatlab also allows the user to customise the evaluation of the objective and constraint functions by replacing the function `OPTJOB`. For example, the default implementation of `OPTJOB` supplied with OptionsMatlab, `optjob.m`, evaluates the objective and constraint functions in serial. An alternative job manager is provided which supports parallel function evaluations (see section 5.10).

This document provides an introduction to the use of the OptionsMatlab package. For further details of the theory of design search and optimisation, and the use of the Options package, please consult the Options manual [1].

OptionsMatlab has three modes of operation:

1. Direct Search. The specified optimisation algorithm is run over the user’s problem, directly invoking the Matlab functions that define the objective and constraint functions.

2. Search Response Surface Model. A Response Surface Model (RSM) is built which models the behaviour of the user’s problem. The RSM is built from the results of a previous design search, and is searched with the specified optimisation algorithm.

3. Hyper-parameter tuning. The Stochastic Process Model hyper-parameters which describe a Stochastic Process Model RSM must be tuned against an existing data set. The specified optimisation is used to tune the hyper-parameters against a data set describing the user’s objective function (and/or constraints).

These modes are invoked depending upon the fields of the input structure (Figure 2).
Figure 2 OptionsMatlab’s modes of operation. Hyper-parameter tuning will be invoked if the input field TUNEHYPER is set (#1). If the input field OBJMOD (or CONMOD) is set the specified optimisation will be run over a RSM (#2). In all other conditions a direct search over the user's objective function is used.
2 Installing OptionsMatlab

This section describes the steps needed to install OptionsMatlab.

2.1 Obtain a Gendat license file

Gendat licenses are linked to the MAC address (Windows) or hostid (UNIX) of the machine running OptionsMatlab, and are available from Prof. Andy Keane.

OptionsMatlab looks for a Gendat license file at the location specified by the environment variable `GENDAT_CODES`. If this environment variable is not specified then the UNIX version of OptionsMatlab looks for a Gendat license in the file `/usr/local/geodise/OptionsMatlab/gendat.cds` and if this file does not exist it will look for `gendat.cds` in the current directory. The Windows version of OptionsMatlab will look for a Gendat license in the file `C:\fortran\gendat\GENDAT.CDS` if the environment variable does not exist.

2.2 Add OptionsMatlab to the Matlab search path

The directory containing the OptionsMatlab functions should be added to the Matlab search path.

If using the Matlab desktop navigate to the 'Set Path' dialog ('File' > 'Set Path'). Click the 'Add Folder' button and browse to the directory containing the OptionsMatlab, select 'OK' to confirm. You may wish to click the 'Save' button to preserve the configuration between sessions. Click 'Close' to dismiss the dialog.

If using Matlab via the Unix terminal use the `addpath` function at the Matlab command line.

```
>> addpath /home/USER/OptionsMatlab
```

System administrators configuring a multi-user Matlab installation may find it preferable to edit `$MATLABROOT/toolbox/local/pathdef.m` to make changes to the Matlab search path available to all users.

To confirm that the Matlab search path has been successfully configured run:

```
>> str = which('OptionsMatlab')
```
The variable \texttt{str} should contain the path of the \texttt{OptionsMatlab} function.

2.3 View the documentation

To read the \texttt{OptionsMatlab} documentation type \texttt{'help OptionsMatlab'} at the Matlab command prompt. This text contains details of the input arguments to \texttt{OptionsMatlab} and the output structures returned. For information about the interfaces required by user-defined objective and constraint functions type \texttt{'help optjob'}.
3 OptionsMatlab Tutorial

3.1 Create a input structure

Use the function createBeamStruct to create an OptionsMatlab input structure. At the command line enter:

```
>> input = createBeamStruct
```

```
input =

    DNULL: -777
    OLEVEL: 2
    MAXJOBS: 10
        NVRS: 2
            VNAM: {'BREADTH'  'HEIGHT'}
        LVARS: [5 2]
        UVARS: [50 25]
        VARS: [30 20]
    NCONS: 5
        CNAM: {'SIGMA-B'  'TAU'  'DEFLN'  'H-ON-B'  'F-CRIT'}
        LCONS: [-777 -777 -777 -777 5000]
        UCONS: [200 100 5 10 -777]
    NPARAMS: 7
        PNAM: {'LENGTH'  'FORCE'  'FACTOR'  'EE'  'GG'  'NU'  'SIGMA-Y'}
            PARAMS: [1500 5000 2 216620 86650 0.2700 200]
            ONAM: 'AREA'
            OMETHD: 2.8000
            DIRCTN: -1
            NITERS: 500
            OPTFUN: 'beamobjfun'
            OPTCON: 'beamobjcon'
            OPTJOB: 'optjob'
```

The OptionsMatlab input structure describes the problem to be searched, including the design variables, constraints and parameters. The input structure will also include details of the optimisation or design search to be run over the problem. The function createBeamStruct is a utility function which creates an input structure specific to
the Beam problem.

The fields of the structure input are described in detail by the documentation for OptionsMatlab. Of particular interest are the fields OPTFUN and OPTCON that specify the Matlab functions that describe the objective and constraint functions respectively. The objective and constraint functions used, beamobjfun.m and beamobjcon.m, is a Matlab implementation of the Beam problem described in the Options manual [1].

The field OMETHD is a scalar which specifies the search method to be used (see FAQ section 5.2 for further details). This example uses a Design of Experiments study, OMETHD = 2.8.

3.2 Run the search

OptionsMatlab can now be invoked with the input structure returned by createBeamStruct. At the command line enter:

```
>> results = OptionsMatlab(input)
```

```
results =

    VARS: [2x1 double]
    OBJFUN: 2.9455e+003
    CONS: [5x1 double]
    OBJTRC: [1x1 struct]
    CONSTRC: [1x1 struct]
```

OptionsMatlab will quickly perform a Design of Experiments study, evaluating the objective and constraint functions NITERS times. The results are returned in the structure results. The fields OBJFUN and VARS contain the minimum objective function found and the corresponding design variables. The field CONS contains the values of the constraints at the design variables VARS.

Other fields OBJTRC and CONSTRC contain the search histories over the objective and constraint functions. This information is valuable to examine the history of the optimisation and build Response Surface Models.
3.3 View the search histories

A simple tool is provided to view the search histories of problems with two design variables. At the command line enter:

```matlab
>> plotOptionsSurfaces(results, input)
```

This will produce plots for the objective function and each of the constraints against the two design variables at each of the design variables evaluated. The final plot shows the objective function plotted against the two design variables, in which each point is coloured depending whether it exceeds the constraints (red), or not (blue) (Figure 3).

![Figure 3 The results of a 500 point DoE plotted with plotOptionsSurfaces](image)

3.4 Build and search a Response Surface Model

The results returned by the Design of Experiments can be used to build a Response Surface Model (RSM) that can be searched very rapidly. This approach may be suitable when either the objective or constraint functions are expensive to evaluate. To do this we must create another input structure, with the same problem definition. We will modify this input structure to specify that a RSM is used to evaluate the objective and constraint functions. At the command line enter:

```matlab
>> inputRSM = createBeamStruct;
```
By specifying OBJMOD and CONMOD equal to 3.5 OptionsMatlab will produce a RSM using a second order polynomial regression model. For a list of the alternative RSM approximation methods available within OptionsMatlab see the FAQ section 5.4.

OMETHD equal to 4 specifies a Genetic Algorithm with 1,000 function evaluations. OptionsMatlab will perform the function evaluations required for the Genetic Algorithm against the RSM (rather than evaluating the user's objective or constraint functions directly).

The input structure inputRSM must be passed into OptionsMatlab together with the results of the Design of Experiments contained in the variable results.

```
>> resultsRSM = OptionsMatlab(inputRSM, results)
```

The results structure returned, resultsRSM, does not contain search histories. This is because the model used to evaluate the design variables is an approximation of the user’s model and should not be considered to be equivalent to direct evaluation. It is good practice to verify the results of a search over a RSM by direct evaluation of the objective and constraint functions at the returned optimum design.
4 Function Reference

Banana problem

An example of the unconstrained Banana problem based upon Rosenbrock's function.

\[f(x) = 100 \cdot (x_2 - x_1^2)^2 + (1 - x_1)^2 \]

Equation 1 Rosenbrock's function

Example

This problem may be extended into multiple dimensions; however by default the problem is 2D. This example plots the objective function surface of the Banana problem.

```matlab
>> input = createbananastruct(2.8, 2);
>> input.OMETHD = 2.8;
>> input.MC_TYPE = 4;
>> input.NITERS = 500;
>> input.LVARS = [-1, -1];
>> output = OptionsMatlab(input)

output =

    VARS: [2x1 double]
    OBJFUN: 0
    OBJTRC: [1x1 struct]
```

```matlab
>> optimisationTerrain(output,input,3)
```
Figure 4 The objective function surface of the Banana problem

Functions

- `bananafun`: objective function
- `bananafun_parallel`: parallel version of the objective function
- `bananafun_parallel_parse`: parallel version of the objective function
- `createbananastuct`: creates an input structure for the banana problem
- `createbananastuctparallel`: creates an input structure for the parallel invocation of the banana problem
Beam problem

An example of the constrained Beam problem

Example

This example plots the objective function surface of the Beam problem.

```matlab
>> input = createBeamStruct;
>> input.MC_TYPE = 4;
>> input.NITERS = 500;
>> output = OptionsMatlab(input)
```

```
output =

    VARS: [2x1 double]
OBJFUN: 2.9269e+003
    CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]
```

```matlab
>> optimisationTerrain(output,input,3)
```

![Figure 5 The valid objective function surface of the Beam problem](image)

Figure 5 The valid objective function surface of the Beam problem
Functions

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beamcon_parallel</td>
<td>parallel version of the constraint function</td>
</tr>
<tr>
<td>beamcon_parallel1_parse</td>
<td>parallel version of the constraint function</td>
</tr>
<tr>
<td>beamcon_parallel2</td>
<td>parallel version of the constraint function</td>
</tr>
<tr>
<td>beamcon_parallel2_parse2</td>
<td>parallel version of the constraint function</td>
</tr>
<tr>
<td>beamfun_parallel</td>
<td>parallel version of the objective function</td>
</tr>
<tr>
<td>beamfun_parallel1_parse</td>
<td>parallel version of the objective function</td>
</tr>
<tr>
<td>beamfun_parallel2</td>
<td>parallel version of the objective function</td>
</tr>
<tr>
<td>beamfun_parallel2_parse</td>
<td>parallel version of the objective function</td>
</tr>
<tr>
<td>beamobjcon</td>
<td>constraint function</td>
</tr>
<tr>
<td>beamobjfun</td>
<td>objective function</td>
</tr>
<tr>
<td>createBeamStruct</td>
<td>creates an input structure for the beam problem</td>
</tr>
<tr>
<td>createBeamStructParallel</td>
<td>creates an input structure for the parallel invocation of the beam problem</td>
</tr>
<tr>
<td>createBeamStructParallel2</td>
<td>creates an input structure for the parallel invocation of the beam problem</td>
</tr>
<tr>
<td>createBeamStructRSM</td>
<td>creates an input structure for the generation of a RSM for the beam problem</td>
</tr>
</tbody>
</table>
Bump problem

An example of the combined objective and constraint function of the Bump problem.

Example
The Bump problem may be extended into multiple dimensions. This example plots the objective function surface of the Bump problem in two dimensions.

```matlab
>> input = createbumpstruct(2.8, 2);
>> input.MC_TYPE = 4;
>> input.NITERS = 500;
>> output = OptionsMatlab(input)

output =

    VARS: [2x1 double]
    OBJFUN: 0.2021
    CONS: [2x1 double]
    OBJTRC: [1x1 struct]
    CONSTRC: [1x1 struct]

>> optimisationTerrain(output,input,3)
```

Figure 6 The valid objective function surface of the Bump problem in two dimensions
Functions

bumpfuncombined combined objective and constraint function
bumpfuncombined_parallel parallel version of the combined objective and constraint function
bumpfuncombined_parallel_parse parallel version of the combined objective and constraint function
createbumpstruct creates an input structure for the bump problem
createbumpstructparallel creates an input structure for the parallel invocation of the bump problem
optimisationAppendDataPoints

Append data points to an output structure

This function appends data points to an OptionsMatlab output structure from a second OptionsMatlab output structure. The function can either copy all of the points, specified points, or the best point returned by the optimiser, from the second output structure.

The edited structure is returned as an output argument.

Syntax

\[
\text{STRUCTOUTEDIT} = \text{optimisationAppendDataPoints}(\text{STRUCTOUT}, \text{STRUCTOUT2})
\]

\[
\text{STRUCTOUTEDIT} = \text{optimisationAppendDataPoints}(\text{STRUCTOUT}, \text{STRUCTOUT2}, \text{POINTS})
\]

Description

\[
\text{STRUCTOUTEDIT} = \text{optimisationAppendDataPoints}(\text{STRUCTOUT}, \text{STRUCTOUT2}) \quad \text{where} \quad \text{STRUCTOUT} \text{ is the results structure returned by OptionsMatlab containing data points in a field OBJTRC (and CONSTRC) or RSMTRC to which the data points are appended.}\]

\[
\text{STRUCTOUT2} \text{ is a results structure from which all data points are copied.}\]

\[
\text{STRUCTOUTEDIT is a copy of STRUCTOUT to which all of the points are copied.}\]

Note that RSM results can only be copied from to a structure containing RSM results (RSMTRC). Also unconstrained data points cannot be copied to a structure containing constrained data.

\[
\text{STRUCTOUTEDIT} = \text{optimisationAppendDataPoints}(\text{STRUCTOUT}, \text{STRUCTOUT2}, \text{POINTS}) \quad \text{as above where POINTS is a string specifying the mode of operation, or a vector specifying the points to be copied.}\]

POINTS may be a string with the following values:

\[
\begin{align*}
\text{all} & \quad \text{all points from STRUCTOUT2 will be appended to STRUCTOUT. This is the default operation if POINTS is empty ([]).} \\
\text{best} & \quad \text{the best point returned specified by STRUCTOUT2 will be appended to STRUCTOUT.}
\end{align*}
\]
If \texttt{POINTS} is a vector it must contain the indices of points in
\texttt{STRUCTOUT2.OBJTRC.OBJFUN} (or \texttt{STRUCTOUT2.RSMTRC.OBJFUN}) to be appended to \texttt{STRUCTOUT}.

\textbf{Examples}
These examples will demonstrate the three modes of operation of\texttt{optimisationAppendDataPoints}:

```matlab
structin = createBeamStruct(2.8);
structin.NITERS = 10; %Do a DoE of ten points
structout = OptionsMatlab(structin);

structin2 = structin;
structin2.OMETHD = 4; %Do a GA of ten points
structout2 = OptionsMatlab(structin2);
```

In this example all data points from the second output structure will be appended to the first.

```matlab
structoutedit = optimisationAppendDataPoints(structout, structout2);
structoutedit.OBJTRC
structoutedit.CONSTRC
```

```
ans =
  OBJFUN: [1x20 double]
  VARS: [2x20 double]
  NCALLS: 20
```

```
ans =
  CONS: [5x20 double]
  VARS: [2x20 double]
  LCONS: [5x20 double]
  UCONS: [5x20 double]
  NCALLS: 20
```

In this example the best data point from the second output structure will be appended to the first.
structoutedit2 = optimisationAppendDataPoints(structout, structout2, 'best');
structoutedit2.OBJTRC
structoutedit2.CONSTRC

ans =
 OBJFUN: [1x11 double]
 VARS: [2x11 double]
 NCALLS: 11

ans =
 CONS: [5x11 double]
 VARS: [2x11 double]
 LCONS: [5x11 double]
 UCONS: [5x11 double]
 NCALLS: 11

In this example the first, fifth and tenth data points from the second output structure will be appended to the first.

structoutedit3 = optimisationAppendDataPoints(structout, structout2, [1,5,10]);
structoutedit3.OBJTRC
structoutedit3.CONSTRC

ans =
 OBJFUN: [1x13 double]
 VARS: [2x13 double]
 NCALLS: 13

ans =
 CONS: [5x13 double]
 VARS: [2x13 double]
 LCONS: [5x13 double]
 UCONS: [5x13 double]
 NCALLS: 13
See also

optimisationCropDataPoints, optimisationReplaceDataPoints
optimisationCropDataPoints

Crops data points from an output structure

This function crops data points from an OptionsMatlab output structure. The output structure can contain data points in a field OBJTRC (and CONSTRC) or RSMTRC.

The points to be cropped are specified by a vector of indices for points in the vector of objective function evaluations. The edited structure is returned as an output argument.

Syntax

\[
\text{STRUCTOUTEDIT} = \text{optimisationCropDataPoints}(\text{STRUCTOUT}, \text{POINTS})
\]

Description

\[
\text{STRUCTOUTEDIT} = \text{optimisationCropDataPoints}(\text{STRUCTOUT}, \text{POINTS}) \quad \text{where } \text{STRUCTOUT} \text{ is the results structure returned by OptionsMatlab containing data points in a field OBJTRC (and CONSTRC) or RSMTRC. POINTS is a vector of indices to data points in } \text{STRUCTOUT.OBJTRC.OBJFUN} \text{ (or } \text{STRUCTOUT.RSMTRC.OBJFUN}).
\]

\[
\text{STRUCTOUTEDIT is a copy of } \text{STRUCTOUT with the specified points cropped.}
\]

Example

In this example the first, fifth and tenth points are cropped from an output structure containing ten points:

```matlab
structin = createBeamStruct(2.8);
structin.NITERS = 10;         %Do a DoE of ten points
structout = OptionsMatlab(structin);

structoutedit = optimisationCropDataPoints(structout, [1,5,10]);
structoutedit.OBJTRC
structoutedit.CONSTRC

ans =
  OBJFUN: [4.1998e+003 2.5211e+003 2.3857e+003 3.2492e+003]
7.9283e+003 708.6411 1.7318e+003
VARS: [2x7 double]
NCALLS: 7

ans =
CONS: [5x7 double]
VARS: [2x7 double]
LCONS: [5x7 double]
UCONS: [5x7 double]
NCALLS: 7

See also
optimisationAppendDataPoints, optimisationReplaceDataPoints
**optimisationReplaceDataPoints**

Replace data points based upon strategy

This function will replace data points from an OptionsMatlab output structure with data points from a second structure selected depending upon the specified strategy. The attribute used to select the data points may the value of the objective function, or the normalized Euclidian distance from the best point specified in STRUCTOUT.

**Syntax**

\[
\text{STRUCTOUTEDIT} = \text{optimisationAppendDataPoints(STRUCTOUT, STRUCTOUT2, STRATEGY, STRUCTIN)}
\]

\[
\text{STRUCTOUTEDIT} = \text{optimisationAppendDataPoints(STRUCTOUT, STRUCTOUT2, STRATEGY, STRUCTIN, NUMPOINTS)}
\]

**Description**

\[
\text{STRUCTOUTEDIT} = \text{optimisationAppendDataPoints(STRUCTOUT, STRUCTOUT2, STRATEGY, STRUCTIN)} \text{ where STRUCTOUT and STRUCTOUT2 are results structure returned by OptionsMatlab containing data points in a field OBJTRC (and CONSTRC) or RSMTRC. STRATEGY is a string that specifies the strategy used to replace data points:}
\]

- **select_best** selects data points from STRUCTOUT and STRUCTOUT2 depending upon the value of the objective function
- **select_closest** selects data points from STRUCTOUT and STRUCTOUT2 depending upon the normalized Euclidian distance from STRUCTOUT.VARS
- **replace_worst** replaces the *worst* NUMPOINTS data points from STRUCTOUT with the *best* points from STRUCTOUT2 depending upon the value of the objective function
- **replace_furthest** replaces the *furthest* NUMPOINTS data points from STRUCTOUT with the *closest* points from STRUCTOUT2 depending upon the normalized Euclidian distance from STRUCTOUT.VARS
STRUCTIN is the OptionsMatlab input structure for the problem that was used to generate the data points. STRUCTOUTEDIT is the edited copy of STRUCTOUT.

Note that RSM results can only be copied from to a structure containing RSM results (RSMTRC). Also unconstrained data points cannot be copied to a structure containing constrained data.

Note that duplicate points are not detected and may occur in STRUCTOUTEDIT.

\[
\text{STRUCTOUTEDIT} = \text{optimisationAppendDataPoints(STRUCTOUT, STRUCTOUT2, STRATEGY, STRUCTIN, NUMPOINTS)} \]

where NUMPOINTS is an integer value that has alternative meanings depending upon the strategy. Where STRATEGY:

- **select_*** NUMPOINTS is the number of data points in STRUCTOUTEDIT. If NUMPOINTS is not specified, or is empty ([]), it will default to STRUCTOUT.*TRC.NCALLS
- **replace_*** NUMPOINTS is the number of data points in STRUCTOUT replaced with points from STRUCTOUT2

**Examples**

These examples will demonstrate the alternative strategies to replace data points.

```
structin = createBeamStruct(2.8);
structin.NITERS = 10; %Do a DoE of ten points
structout = OptionsMatlab(structin)

structin2 = structin;
structin2.OMETHD = 4; %Do a GA of ten points
structout2 = OptionsMatlab(structin2)
```

In this example the *best* data points are selected from between structout and structout2.

```
structoutedit = optimisationReplaceDataPoints(structout, ...
 structout2,'select_best',structin)
structoutedit.OBJTRC.OBJFUN
structoutedit.OBJTRC.VARS
```
In this example 15 data points are selected from between `structout` and `structout2` depending upon their normalized Euclidian distance from `structout.VARS`.

```matlab
structoutedit = optimisationReplaceDataPoints(structout, ...
 structout2,'select_closest',structin,15)
structoutedit.OBJTRC.OBJFUN
structoutedit.OBJTRC.VARS
```

In this example the 5 worst data points from `structout` are replaced by the 5 best data points from `structout2`.

```matlab
structoutedit = optimisationReplaceDataPoints(structout, ...
 structout2,'replace_worst',structin,5)
structoutedit.OBJTRC.OBJFUN
structoutedit.OBJTRC.VARS
```

In this example the 5 data points from `structout` that are furthest from `structout.VARS` are replaced by the 5 closest points from `structout2`.

```matlab
structoutedit = optimisationReplaceDataPoints(structout, ...
 structout2,'replace_furthest',structin,5)
structoutedit.OBJTRC.OBJFUN
structoutedit.OBJTRC.VARS
```

See also: `optimisationCropDataPoints`, `optimisationAppendDataPoints`
optimisationDigest

Prints the results of an optimisation and returns validity of optimum

Syntax

ISVALID = optimisationDigest(STRUCTOUT, STRUCTIN)

ISVALID = optimisationDigest(STRUCTOUT, STRUCTIN, FILENAME)

ISVALID = optimisationDigest(STRUCTOUT, STRUCTIN, [])

Description

ISVALID = optimisationDigest(STRUCTOUT, STRUCTIN) Prints digest to standard output, where STRUCTOUT is the output, and STRUCTIN the input, from OptionsMatlab. ISVALID is 1 where the optimum point returned by the optimisation does not violate the constraints or the design variable limits, otherwise ISVALID is 0.

ISVALID = optimisationDigest(STRUCTOUT, STRUCTIN, FILENAME) Prints direct to FILENAME

ISVALID = optimisationDigest(STRUCTOUT, STRUCTIN, []) Suppresses digest output

Example

The output of optimisationDigest is illustrated by the following example:

>> input = createBeamStruct
>> results = OptionsMatlab(input)
>> isvalid = optimisationDigest(results, input)
Optimisation of the problem defined by "beamobjfun" and "beamobjcon"
Optimisation method: 2.8

Status after 500 evaluations is:-

Trial vector

<table>
<thead>
<tr>
<th>Lwr Bound</th>
<th>Vector</th>
<th>Uppr Bound</th>
<th>Variable (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00000000</td>
<td>&lt; 19.96577454</td>
<td>&gt; 50.00000000</td>
<td>BREADTH</td>
</tr>
<tr>
<td>2.00000000</td>
<td>&lt; 14.75254536</td>
<td>&gt; 25.00000000</td>
<td>HEIGHT</td>
</tr>
</tbody>
</table>

No of V. Boundary Violations = 0

Objective Function (min.) = 2945.4599 AREA

Constraints vector

<table>
<thead>
<tr>
<th>Lwr Bound</th>
<th>Vector</th>
<th>Uppr Bound</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>(units)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 103.56009357</td>
<td>&gt; 200.00000000</td>
<td>SIGMA-B</td>
<td></td>
</tr>
<tr>
<td>&lt; 2.54629163</td>
<td>&gt; 100.00000000</td>
<td>TAU</td>
<td></td>
</tr>
<tr>
<td>&lt; 4.86091675</td>
<td>&gt; 5.00000000</td>
<td>DEFLN</td>
<td></td>
</tr>
<tr>
<td>&lt; 7.38891713</td>
<td>&gt; 10.00000000</td>
<td>H-ON-B</td>
<td></td>
</tr>
<tr>
<td>5000.00000000</td>
<td>&lt; 184550.01793812</td>
<td>F-CRIT</td>
<td></td>
</tr>
</tbody>
</table>

No of Constraint Violations = 0

isvalid = 1

See also
OptionsMatlab
**optimisationHistory**

Plots a trace of the optimisation search history.

*optimisationHistory* plots a trace of the objective function over the search history. *optimisationHistory* provides a convenient way to view the search history over a number of searches by combining this information in a single plot.

**Syntax**

```
optimisationHistory(RESULTS)
optimisationHistory(RESULTS,LABELS)
optimisationHistory(RESULTS,LABELS,WITHMARKERS)
optimisationHistory(RESULTS,LABELS,WITHMARKERS,ISLOG)
```

**Description**

- **optimisationHistory(RESULTS)** Where *RESULTS* is a cell array containing all of the search results to be plotted. The elements of this array may be either OptionsMatlab output structures or vectors containing objective function values.

- **optimisationHistory(RESULTS,LABELS)** Where *LABELS* is a cell array of strings containing the labels for a legend which annotates each of the searches plotted. *LABELS* must be the same length as *RESULTS*, otherwise *LABELS* may be empty if no legend is required.

- **optimisationHistory(RESULTS,LABELS,WITHMARKERS)** Where *WITHMARKERS* specifies whether markers are to be used on the plot. If *WITHMARKERS* equals 0 markers will not be used, otherwise markers are generated automatically (default).

- **optimisationHistory(RESULTS,LABELS,WITHMARKERS,ISLOG)** Where *ISLOG* specifies whether the scale of the Y-axis is logarithmic. If *WITHMARKERS* equals 0 a linear scale will be used (default), otherwise a logarithmic scale will be used for the Y-axis.

**Example**

The following example illustrates the use of *optimisationHistory*:
>> input = createBeamStruct;
>> input.OMETHD = 1.6;
>> results{1} = OptionsMatlab(input);
>> results{2} = rand(200,1)*3000+1000;
>> labels = {'Optivar SEEK','Random values'}
>> optimisationHistory(results, labels)

Figure 7 The plot produced by optimisationHistory

See also
OptionsMatlab, plotOptionsSurfaces
**optimisationSampleRSM**

Builds and samples a Response Surface Model.

This function will generate an array of candidate points and then invokes OptionsMatlab to build a Response Surface Model (RSM) and samples the candidate points. The structure returned by `optimisationSampleRSM` can then be plotted.

**Syntax**

```matlab
STRUCTOUT = optimisationSampleRSM(STRUCTIN, RESULTS, NUMPOINTS)
STRUCTOUT = optimisationSampleRSM(..., LVARS, UVARS)
[STRUCTOUT, VECTORS] = optimisationSampleRSM(...)
```

**Description**

```matlab
STRUCTOUT = optimisationSampleRSM(STRUCTIN, RESULTS, NUMPOINTS)
```

where `STRUCTIN` is an `OptionsMatlab` input structure which specifies the RSM, and `RESULTS` is an output structure containing the results over which the RSM is built. If `NUMPOINTS` is a scalar value, this will specify the total number of sample points which will be distributed evenly across `NVRS` dimensions. Otherwise `NUMPOINTS` must be a vector of length `NVRS` which specifies the number of sample points in each dimension (the total number of sample points will equal \( \text{PROD}(\text{NUMPOINTS}) \)). The return argument `STRUCTOUT` will contain the output structure returned by `OptionsMatlab`.

To hold a design variable constant set the corresponding element of `NUMPOINTS` equal to zero. All design variables for which `NUMPOINTS` is zero will be sampled at the value specified by `STRUCTIN.VARS`.

```matlab
STRUCTOUT = optimisationSampleRSM(..., LVARS, UVARS)
```

where `LVARS` and `UVARS` are vectors that specify the upper and lower limits between which the design variables are sampled. If these vectors are not specified the values of `LVARS` and `UVARS` defined in `STRUCTIN` are used.

```matlab
[STRUCTOUT, VECTORS] = optimisationSampleRSM(...)
```

where `VECTORS` is a cell array containing `NVRS` vectors of the points at which the each of the design variables were sampled.
Examples
The first example will sample response surface models built over the beam problem.

```matlab
%Run a DOE in OptionsMatlab
input1 = createBeamStruct;
input1.NITERS = 50;
output1 = OptionsMatlab(input1);

%Create an input structure to search a RSM
input2 = createBeamStruct;
input2.OBJMOD = 3.3;
input2.CONMOD = 3.3;

%Sample 100 evenly spaced points
output2 = optimisationSampleRSM(input2, output1, 100)

output2 =

 VARS: [2x1 double]
 OBJFUN: 2.3606e+003
 CONS: [5x1 double]
 RSMTRC: [1x1 struct]

%Plot an interpolated surface over the sampled points
fig = optimisationTerrain(output2, input2);
%Plot the original points
optimisationTrace(output1, input1, 1, fig);
```
%Sample 5 points in the first dimension and 20 points in the second dimension
output3 = optimisationSampleRSM(input2, output1, [5, 20])
optimisationTerrain(output3, input2);

output3 =

    VARS: [2x1 double]
    OBJFUN: 2.3606e+003
    CONS: [5x1 double]
    RSMTRC: [1x1 struct]
The second example samples the bump problem over two dimensions of a five dimensional problem. The values of the design variables which are held constant are specified by `input5.VARS`.

```matlab
% Run a DOE over the bump function in 5 dimensions
input4 = createbumpstruct(2.8, 5);
input4.NITERS = 50;
output4 = OptionsMatlab(input4);

% Build a RSM over the DOE and sample in the second and third dimensions
input5 = createbumpstruct(2.8, 5);
input5.OBJMOD = 3.3;
input5.CONMOD = 3.3;
output5 = optimisationSampleRSM(input5, output4, [0, 20, 0, 0, 0, 0]);

% Plot the sampled points in the second and third dimensions
optimisationTerrain(output5, input5, 1, [], [-37.5, 30], [2, 3]);
```
Figure 10 Third plot of the output of optimisationSampleRSM

See also

optimisationTerrain, OptionsMatlab
optimisationSearchTrace

Search trace history for values at optimum VARS

This function searches the optimisation trace history(ies) in OBJTRC (and CONSTRC) or RSMTRC fields of an OptionsMatlab output structure for the values of the objective and constraint functions at the optimum vector in the VARS field. The function will only operate on structures for which the values of OBJFUN and/or CONS are zero. This function is intended for use when a search has been performed at OLEVEL<2 and the values at the optimum point have not been returned.

The edited structure is returned as an output argument.

Syntax

```plaintext
STRUCTOUTEDIT = optimisationSearchTrace(STRUCTOUT)
```

Description

```plaintext
STRUCTOUTEDIT = optimisationSearchTrace(STRUCTOUT) where
STRUCTOUT is the results structure returned by OptionsMatlab containing data points in a field OBJTRC (and CONSTRC) or RSMTRC.
```

Example

This example demonstrates how the values of the objectives and constraints are retrieved from the trace history when the search has been performed at OLEVEL=0:

```plaintext
structin = createBeamStruct(2.8);
structin.OLEVEL = 0; %Validation call not made
structin.NITERS = 10; %Do a DoE of ten points
structout = OptionsMatlab(structin)

structout.OBJFUN
structout.CONS
```
This searches the problem at OLEVEL=0 and consequently the values of the objective and constraints at `structout.VARS` are returned as zeros in `structout.OBJFUN` and `structout.CONS`. The values of the objective and constraints at the optimum point are assigned to these variables by searching the trace history:

```matlab
structout =

 VARS: [2x1 double]
 OBJFUN: 0
 CONS: [5x1 double]
 OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

ans =

 0

ans =

 0
 0
 0
 0
 0
 0
 0

structout2 = optimisationSearchTrace(structout)
structout2.OBJFUN
structout2.CONS
```
structout2 =

    VARS: [2x1 double]
    OBJFUN: 5.0853e+003
    CONS: [5x1 double]
    OBJTRC: [1x1 struct]
    CONSTRC: [1x1 struct]

ans =

5.0853e+003

ans =

1.0e+005 *

0.0004
0.0000
0.0000
0.0001
5.4913

See also
OptionsMatlab
**optimisationTerrain**

Mesh, surface & contour plots of optimisation results

This function plots surfaces produced by interpolation between the points at which the objective function was evaluated. The optimisation terrain may be represented as a mesh, surface or contour plot. The points which do not meet the optimisation constraints will be cropped from the surface.

**Syntax**

```matlab
optimisationTerrain(STRUCTOUT,STRUCTIN)
optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE)
optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG)
optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,VIEW)
optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,VIEW,DIMS)
FIG = optimisationTerrain(...)```

Description

`optimisationTerrain(STRUCTOUT,STRUCTIN)` where `STRUCTOUT` is the results structure returned by `OptionsMatlab` and `STRUCTIN` is the `OptionsMatlab` input structure.

`optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE)` as above where `PLOTTYPE` is a scalar which indicates the type of plot. The valid values of `PLOTTYPE` are:

1 = Mesh of valid points [default]
2 = Mesh of valid points in a single colour
3 = Surface of valid points
4 = 3D contour plot of valid points
5 = 3D contour plot of valid points with a mesh
6 = Mesh of all points
7 = Mesh of all points in a single colour
8 = Surface of all points
9 = 3D contour plot of all points
10 = 3D contour plot of all points with a mesh

`optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG)` as above where `FIG` is the figure in which to plot the optimisation terrain. If `FIG` is not
provide a new figure will be generated. FIG can also be empty [].

\[
\text{optimisationTerrain}(\text{STRUCTOUT}, \text{STRUCTIN}, \text{PLOTTYPE}, \text{FIG}, \text{VIEW})
\]
as above where VIEW is a two element vector that sets the view of the 3D plot. For example \(\text{VIEW} = [0\ 90]\) for overhead plots. The default view is \([-37.5, 30]\). VIEW can also be empty [].

\[
\text{optimisationTerrain}(\text{STRUCTOUT}, \text{STRUCTIN}, \text{PLOTTYPE}, \text{FIG}, \text{VIEW}, \text{DIMS})
\]
as above where DIMS is a two element vector specifying the two design variables to be plotted. By default the first two design variables are plotted.

\[
\text{FIG} = \text{optimisationTerrain}(...)
\]
as above where FIG is a the number of figure in which the terrain was plotted.

Example

\[
\begin{align*}
\text{input} &= \text{createBeamStruct}; \\
\text{results} &= \text{OptionsMatlab}(\text{input}) \\
\text{optimisationTerrain}(\text{results}, \text{input})
\end{align*}
\]

See also

\text{view, mesh, griddata}
optimisationTestSuite

A script which demonstrates the functionality of OptionsMatlab with the Beam problem.

See also
beamcon_parallel, beamcon_parallel_parse, beamfun_parallel, beamfun_parallel_parse, beamobjcon, beamobjfun, createBeamStruct, createBeamStructParallel, createBeamStructRSM

optimisationTestSuiteComb

A script which demonstrates the functionality of OptionsMatlab with the combined objective and constraint function of the Bump problem.

See also
bumpfuncombined, bumpfuncombined_parallel, bumpfuncombined_parallel_parse, createbumpstruct, createbumpstructparallel

optimisationTestSuiteUncon

A script which demonstrates the functionality of OptionsMatlab with unconstrained Banana problem based upon Rosenbrock's function.

See also
bananafun, bananafun_parallel, bananafun_parallel_parse, createbananastruct, createbananastructparallel
optimisationTestSuiteSPM

A script which demonstrates the stochastic process model functionality of OptionsMatlab with constrained or unconstrained problems.

This function is intended as an extension to the test suites and performs additional tests that search and sample stochastic process model RSMs using quick tuned hyperparameters. These tests can be invoked on constrained and unconstrained design problems and demonstrate how to build and investigate stochastic process models.

Syntax

 optimisationTestSuiteSPM(STRUCTIN, STRUCTOUT_DOE, STRUCTOUT_HP)

 optimisationTestSuiteSPM(..., PLOTTYPE)

Description

 optimisationTestSuiteSPM(STRUCTIN, STRUCTOUT_DOE, STRUCTOUT_HP) where STRUCTIN is the default input data structure for the design problem, STRUCTOUT_DOE is the trace history of a previous design search which contains the information required to generate the RSM and STRUCTOUT_HP is the results of tuning the hyperparameters of a stochastic process model over the points in the DoE.

 optimisationTestSuiteSPM(..., PLOTTYPE) where PLOTTYPE is a scalar which indicates the type of plot used in calls to optimisationTerrain. The valid values of PLOTTYPE are:

 0 = No plotting
 1 = Mesh of valid points [default]
 2 = Mesh of valid points in a single colour
 3 = Surface of valid points
 4 = 3D contour plot of valid points
 5 = 3D contour plot of valid points with a mesh
 6 = Mesh of all points
 7 = Mesh of all points in a single colour
 8 = Surface of all points
 9 = 3d contour plot of all points
 10 = 3d contour plot of all points with a mesh
Example
This example demonstrates how the SPM tests can be invoked on the Banana problem

```matlab
>> inputStruct = createbananastruct;

Perform a 50 point DoE over the problem

```matlab
>> input1 = inputStruct;
>> input1.OLEVEL = 0;
>> input1.OMETHD = 2.8; %Design of Experiments
>> input1.NITERS = 50; %Number of iterations
>> input1.MC_TYPE = 4; %Full factorial DoE
>> output1 = OptionsMatlab(input1);
```

Perform a quick tuning of the hyperparameters of the stochastic process model RSM

```matlab
>> input10 = inputStruct;
>> input10.OLEVEL = 0;
>> input10.OBJMOD = 4.1; %Stochastic process model
>> input10.CONMOD = 4.1; %Stochastic process model
>> input10.RSM_QCK_HP = 1; %Quick hyperparameter tuning
>> output10 = OptionsMatlab(input10, output1);
```

Invoke the stochastic process model test suite on the problem

```matlab
>> optimisationTestSuiteSPM(inputStruct, output1, output10, 5)
```
Figure 12 Sampled stochastic process model RSM surface and result of the search for the optimum.

Figure 13 Sampled Root Mean Square Error of the stochastic process model RSM and the result of the search for the maximum in the surface.
Figure 14 Sampled Expected Improvement of the stochastic process model RSM and the result of the search for the maximum in the surface. NB. When the direction of the underlying search is negative (minimisation) Options automatically inverts the surface to seek the numerical minimum in the EI surface which will be the point of maximum EI in the true problem – the test suite plots the raw minimisation search in figure 1 and plots the inverted surface in figure 2.

Figure 15 Sampled Probability of Improvement of the stochastic process model RSM and the result of the search for the maximum in the surface. NB. When the direction of the underlying search is negative (minimisation) Options automatically inverts the surface to seek the numerical minimum in the PI
surface which will be the point of maximum PI in the true problem – the test suite plots the raw
minimisation search in figure 1 and plots the inverted surface in figure 2.

See also

optimisationTestSuite, optimisationTestSuiteComb,
optimisationTestSuiteUncon
**optimisationTilePlot**

Tile plot of four dimensions of a problem

This plots the behaviour of the objective function over four dimensions of a problem. The first two of the design variables (A and B) are plotted across rows and columns of tiles. The third and fourth design variables (1 and 2) will be plotted across the x and y axes of each tile.

Each design variable will be sampled at the specified number of points between the limits defined within the fields LVARS and UVARS of STRUCTIN. For example a problem in which the variables A and B are each sampled at two points the resulting tile plot will have four tiles.

![Tile plot diagram](image)

The value of the objective function is plotted as a surface within each 2D tile. The surface colormap is consistent between the tiles. The tile plot is interactive, and by clicking on a tile it is visible as a 3D plot in a separate figure window.

**Syntax**

```matlab
optimisationTilePlot(STRUCTOUT,STRUCTIN,DESIGNVARS,
NUMPOINTS,TILETYPE)
optimisationTilePlot(...,PLOTPOINTS)
optimisationTilePlot(...,FIG)
FIG = optimisationTilePlot(...)
[FIG,TILESOUT,TILESIN] = optimisationTilePlot(...)
optimisationTilePlot(TILESOUT,TILESIN)
```

**Description**

`optimisationTilePlot(STRUCTOUT,STRUCTIN,DESIGNVARS,
NUMPOINTS,TILETYPE)` where `STRUCTOUT` is the results structure returned by OptionsMatlab and `STRUCTIN` is the corresponding OptionsMatlab input structure. If
the TILETYPE is direct search STRUCTOUT can be empty [].

DESIGNVARS must be a four element vector that defines the design variables to be plotted [A,B,1,2] based upon their index in STRUCTIN.VARS. NUMPOINTS must also be a four element vector that defines the number of points to be evaluated for each of the DESIGNVARS.

TILETYPE is an integer that defines how the tile is to be evaluated. The valid values of TILETYPE are:

1 = Evaluation of the RSM defined by the fields OBJMOD and CONMOD of STRUCTIN
2 = Direct search of the objective function

optimisationTilePlot(...,PLOTPOINTS) as above when PLOTPOINTS is a flag that indicates whether to plot the data points. For a RSM if PLOTPOINTS = 1 the original data points contained in STRUCTOUT will be plotted in each tile, otherwise for a direct search the evaluated points will be plotted. If PLOTPOINTS = 0 the points will not be plotted. Default value PLOTPOINTS = 0.

optimisationTilePlot(...,FIG) as above where FIG is the figure in which to plot the tile plot. If FIG is not provide a new figure will be generated. FIG can also be empty [].

FIG = optimisationTilePlot(...) as above where FIG is a the number of figure in which the tiles were plotted.

[FIG,TILESOUT,TILESIN] = optimisationTilePlot(...) as above where TILESOUT and TILESIN are cell arrays containing the OptionsMatlab output and input structures that were used to generate the surfaces for each of the tiles.

optimisationTilePlot(TILESOUT,TILESIN) replots the tile plot with data returned in the cell arrays TILESOUT and TILESIN. All other input arguments are optional. The PLOTPOINTS argument can be supplied to indicate that the data points should be plotted.

Examples
The following example demonstrates a tile plot of the peaks4d problem using direct search:
>> structin = createpeaks4dstruct(2.8);
>> optimisationTilePlot([],structin,[3,4,1,2],[2,3,15,15],2)

By clicking on the tiles of the tile plot with the mouse that tile will be displayed in 3D. For example by clicking on the tile in the top left of the figure the following plot will be displayed:
The second example demonstrates a tile plot of the peaks4d problem produced using a Shepard RSM. Using the PLOTPOINTS argument the points of the original data set are also plotted:

```matlab
>> structin = createpeaks4dstruct(2.8);
>> structin.NITERS = 25;
>> structout = OptionsMatlab(structin);

>> structin.OBJMOD = 1; %Shepard RSM
>> structin.CONMOD = 1;
>> optimisationTilePlot(structout,structin,[3,4,1,2], [2,3,15,15],1,1)
```
Figure 18 Tile plot of the peaks4d problem produced with a Shepard RSM and the original data set

See also

optimisationTerrain, optimisationTrace
**optimisationTrace**

Plots the objective function against two design variables

This function plots points at which the objective function was evaluated. The objective function points may be plotted in colour or black and white. The points may also be joined to represent the sequence of function evaluations.

**Syntax**

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN})
\]

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN,PLOTTYPE})
\]

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN,PLOTTYPE,FIG})
\]

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,VIEW})
\]

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,VIEW,DIMS})
\]

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,VIEW,DIMS,LABELS})
\]

\[
\text{FIG} = \text{optimisationTrace}(\ldots)
\]

**Description**

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN}) \text{ where STRUCTOUT is the results structure returned by OptionsMatlab and STRUCTIN is the OptionsMatlab input structure.}
\]

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN,PLOTTYPE}) \text{ as above where PLOTTYPE is a scalar which indicates the type of plot. The valid values of PLOTTYPE are:}
\]

1 = Coloured point plot [default]
2 = Black and white point plot
3 = Coloured joined point plot
4 = Back and white joined point plot

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN,PLOTTYPE,FIG}) \text{ as above where FIG is the figure in which to plot the optimisation terrain. If FIG is not provide a new figure will be generated. FIG can also be empty [].}
\]

\[
\text{optimisationTrace}(\text{STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,VIEW}) \text{ as above where VIEW is a two element vector that sets the view of the 3D plot. For}
\]

example VIEW = [0 90] for overhead plots. The default view is [-37.5, 30]. VIEW can also be empty [].

\texttt{optimisationTrace(STRUCTOUT, STRUCTIN, PLOTTYPE, FIG, VIEW, DIMS)} as above where DIMS is a two element vector specifying the two design variables to be plotted. By default the first two design variables are plotted.

\texttt{optimisationTrace(STRUCTOUT, STRUCTIN, PLOTTYPE, FIG, VIEW, DIMS, LABELS)} as above where LABELS is a flag specifying whether the plot should be labelled. By default labelling is switched off (LABELS = 0).

\texttt{FIG = optimisationTrace(...)} as above where FIG is a the number of figure in which the terrain was plotted.

\textbf{Example}

\begin{verbatim}
input = createBeamStruct;
results = OptionsMatlab(input)
optimisationTrace(results, input)
\end{verbatim}

Figure 19 Plot produced by \texttt{optimisationTrace}

\textbf{See also}

\texttt{view, mesh, griddata}
OptionsMatlab

Options optimisation and design search package

OptionsMatlab makes the Options optimisation and design search package available to Matlab, calling user-defined constraint and objective functions defined as Matlab functions. OptionsMatlab also supports a number of Response Surface Model algorithms that allow optimisation to be carried out cheaply using approximations of the values of the objective function and/or constraints.

Syntax

\[
\text{STRUCTOUT} = \text{OptionsMatlab} (\text{STRUCTIN}) \\
\text{STRUCTOUT} = \text{OptionsMatlab} (\text{STRUCTIN}, \text{STRUCTOUT})
\]

Description

\[
\text{STRUCTOUT} = \text{OptionsMatlab} (\text{STRUCTIN}) \text{ where } \text{STRUCTIN} \text{ is a Matlab structure containing the problem definition and control parameters for the optimisation algorithms, and } \text{STRUCTOUT} \text{ is a structure containing optimum design variables and the objective function and constraint values at this point.}
\]

\[
\text{STRUCTOUT2} = \text{OptionsMatlab} (\text{STRUCTIN}, \text{STRUCTOUT}) \text{ where } \text{STRUCTIN} \text{ is a Matlab structure containing the problem definition and control parameters for an optimisation over a Response Surface Model (RSM), and where } \text{STRUCTOUT} \text{ is the trace history of a previous design search which contains the information required to generate the RSM. } \text{STRUCTIN} \text{ should contain values for either of the parameters OBJMOD or CONMOD which specify the RSM used, if any, for the objective function and constraints. The design search used to generate data points from which the RSM is produced should ideally be a space-filling search such as a Genetic Algorithm (GA) or Design of Experiments (DoE).}
\]

Input argument

The structure \text{STRUCTIN} must contain a number of mandatory fields, and may also contain a number of optional control parameters. The mandatory fields required are:

- \text{DNULL}: A number that corresponds to a NULL value in the problem setup
- \text{OLEVEL}: [optional] The output level of the OptionsMatlab package \([0-10]\). Default value \text{OLEVEL} = 1.
- \text{MAXJOBS}: [optional] Allows the user to limit the number of parallel jobs. Default value \text{MAXJOBS} = 1.
NVRS: The number of design variables
VARS: A vector of NVRS design variables corresponding to the initial design variables to be evaluated
VNAM: A cell array of length NVRS containing the names of the design variables for the internal GENDAT database (variable names must not exceed 10 chars)
LVARS: A vector of length NVRS representing the lower limits to the design variable values.
UVARS: A vector of length NVRS representing the upper limits to the design variable values.
NDVRS: [optional] The maximum number of discrete design variable values for any single design variable. Default value NDVRS = 0, where all design variables are contiguous.
DVARS: [required if NDVRS > 0] A matrix of size NVRS by NDVRS of the discrete design variable values (set to DNULL if contiguous)

NCONS: [optional] The number of design constraints. If NCONS is set to zero the problem will be unconstrained, and OPTCON will not be invoked. Default value NCONS = 0.
CNAM: [required if NCONS > 0] A cell array of length NCONS containing the names of the design constraints for the internal GENDAT database (constraint names must not exceed 10 chars)
LCONS: [required if NCONS > 0] A vector of length NCONS representing the lower limits to the design constraints (set to DNULL if no lower limit)
UCONS: [required if NCONS > 0] A vector of length NCONS representing the upper limits to the design constraints (set to DNULL if no upper limit)

NPARAMS: [optional] The number of user-defined parameters. If NPARAMS are set to zero an empty parameter array will be passed to the user-defined functions. Default value NPARAMS = 0.
PARAMS: [required if NPARAMS > 0] A vector of NPARAMS user-defined parameter values
PNAM: [required if NPARAMS > 0] A cell array of length NPARAMS containing the names of the user-defined parameters for the internal GENDAT database (parameter names must not exceed 10 chars)

ONAM: A char array (max length 10 chars) containing the name of the objective
function in the internal GENDAT database.

OMETHD: The number of the optimisation or design search algorithm to be used. The available search methods are:

- 0.0 to just evaluate the user's problem code at the point specified
- 1.1 for OPTIVAR routine ADRANS
- 1.2 for OPTIVAR routine DAVID
- 1.3 for OPTIVAR routine FLETCH
- 1.4 for OPTIVAR routine JO
- 1.5 for OPTIVAR routine PDS
- 1.6 for OPTIVAR routine SEEK
- 1.7 for OPTIVAR routine SIMPLX
- 1.8 for OPTIVAR routine APPROX
- 1.9 for OPTIVAR routine RANDOM
- 2.1 for user specified routine OPTUM1
- 2.2 for user specified routine OPTUM2
- 2.3 for NAG routine E04UCF
- 2.4 for bit climbing
- 2.5 for dynamic hill climbing
- 2.6 for population based incremental learning
- 2.7 for numerical recipes routines
- 2.8 for design of experiment based routines
- 3.11 for Schwefel library Fibonacci search
- 3.12 for Schwefel library Golden section search
- 3.13 for Schwefel library Lagrange interval search
- 3.2 for Schwefel library Hooke and Jeeves search
- 3.3 for Schwefel library Rosenbrock search
- 3.41 for Schwefel library DSCG search
- 3.42 for Schwefel library DSCP search
- 3.5 for Schwefel library Powell search
- 3.6 for Schwefel library DFPS search
- 3.7 for Schwefel library Simplexsearch
- 3.8 for Schwefel library Complexsearch
- 3.91 for Schwefel library two-membered evolution strategy
- 3.92 for Schwefel library multi-membered evolution strategy
- 4 for genetic algorithm search
- 5 for simulated annealing
- 6 for evolutionary programming
for evolution strategy

**DIRCTN:** The search direction (in the range +/-2). The optimizers try to minimize the objective function if this argument is -1, maximize it if is +1, minimize the log of the function if it is -2 or maximize the log if it is +2

**NITERS:** The maximum number of iterations to be used

**OPTJOB:** The name of the Matlab function responsible for calling the user-defined objective and constraint functions (maximum length 255 chars)

**OPTFUN:** A string describing the user-defined objective function routine to be called by the OPTJOB (maximum length 255 chars)

**OPTCON:** [required if NCONS > 0] A string describing the user-defined constraint function routine to be called by the OPTJOB (maximum length 255 chars)

**OBJMOD:** [optional] The RSM method to be used to approximate the value of objective function. The available methods are:

- **1.0** for a Shepard response surface model should
- **2.1** for linear Radial Basis Function
- **2.2** for thin plate Radial Basis Function
- **2.3** for cubic splines Radial Basis Function
- **2.4** for cubic splines Radial Basis Function with regression via reduced bases
- **3.1** for mean polynomial regression model
- **3.2** for first order polynomial regression model
- **3.3** for first order polynomial regression model plus squares
- **3.4** for first order polynomial regression model plus products (cross-terms)
- **3.5** for second order polynomial regression model
- **3.6** for second order polynomial regression model plus cubes
- **4.1** for a Stochastic Process Model
- **4.2** for the root mean square error of the Stochastic Process Model
- **4.3** for the expected improvement of the Stochastic Process Model
- **4.31** for the expected improvement of the constrained Stochastic Process Model [requires CONMOD=4.1]
- **4.32** for the feasibility of improvement of the constrained Stochastic Process Model [requires CONMOD=4.1]
- **4.33** for the probability of improvement of the Stochastic Process Model
0.0 if the underlying user supplied function is to be called.

**CONMOD:** [optional] The RSM method to be used to approximate the values of the constraints. The available methods are:
- **1.0** for a Shepard response surface model should
- **2.1** for linear Radial Basis Function
- **2.2** for thin plate Radial Basis Function
- **2.3** for cubic splines Radial Basis Function
- **2.4** for cubic splines Radial Basis Function with regression via reduced bases
- **3.1** for mean polynomial regression model
- **3.2** for first order polynomial regression model
- **3.3** for first order polynomial regression model plus squares
- **3.4** for first order polynomial regression model plus products (cross-terms)
- **3.5** for second order polynomial regression model
- **3.6** for second order polynomial regression model plus cubes
- **4.1** for a Stochastic Process Model
- **4.2** for the root mean square error of the Stochastic Process Model
- **4.3** for the expected improvement of the Stochastic Process Model

**0.0** if the underlying user supplied function is to be called.

**NUMUPDATE:** [optional] is a scalar which determines the number of update points to be returned when a search routine is run over a RSM. Update points can be used to improve the accuracy of the dataset that was used to generate the RSM. The update points are return in a sub-structure **DOE_TRACE** in the output structure. If **NUMUPDATE** is not specified then update points are not returned by OptionsMatlab.

**DOE_TRACE:** [optional] is a structure containing the user-supplied DOE points to be used when the control parameter **MC_TYPE** equals 7. **DOE_TRACE** requires two mandatory fields:
- **DOE_TRACE.NCALLS:** the number of user-supplied DOE points. Note that **DOE_TRACE.NCALLS** must equal **NITERS-1** as the DOE will first evaluate the design variables **VARS**.
- **DOE_TRACE.VARS:** the design points to be evaluated during the DOE (size **NVARS** by **DOE_TRACE.NCALLS**)

**OBJHYPER:** [optional] is a structure containing Stochastic Process Model
hyper-parameters used to approximate the value of the objective function. 

**OBJHYPER** has three recognised fields:

- **OBJHYPER.OBJ_LAMBDA**: the value of hyper-parameter LAMBDA  
- **OBJHYPER.OBJ_THETA**: the values of hyper-parameter THETA (length NVARS; see RSM_QCK_HP)  
- **OBJHYPER.OBJ_EXP**: the values of hyper-parameter EXP (length NVARS; see RSM_QCK_HP)  

**CONHYPER**: [optional] is a structure containing Stochastic Process Model hyper-parameters used to approximate the value of the constraints. **CONHYPER** has three recognised fields:

- **CONHYPER.CST_LAMBDA**: the value of hyper-parameter LAMBDA  
- **CONHYPER.CST_THETA**: the values of hyper-parameter THETA (length NVARS; see RSM_QCK_HP)  
- **CONHYPER.CST_EXP**: the values of hyper-parameter EXP (length NVARS; see RSM_QCK_HP)  

**RSM_QCK_HP**: [optional] is a flag that indicates whether quick hyper-parameter tuning should be used when building and searching a Stochastic Process Model RSM. Quick tuning will be used when **RSM_QCK_HP** is true (e.g. 1). In this condition single values of the hyper-parameters THETA and EXP will be tuned across all design variables, rather than NVARS values of THETA and EXP corresponding to each design variable. This approach is faster but less accurate, and may be appropriate for some problems. If **RSM_QCK_HP** is true the values of **OBJ_EXP** and **OBJ_THETA**, and of **CST_EXP** and **CST_THETA** (in the structures **OBJHYPER** and **CONHYPER**) will be scalar, rather than a vector of length NVARS. Quick hyper-parameter tuning is not available when manually tuning the hyper-parameters (i.e. when **TUNEHYPER**>0).

**USERDATA**: [optional] is an optional field which can contain any type of Matlab variable. This variable will be passed to the user-defined objective and constraint functions via the **OPTJOB** function.

**TUNEHYPER**: [optional] is a flag that indicates whether Stochastic Process Model hyper-parameters should be tuned over the search history contained in the second input argument. Hyper-parameters will be tuned if **TUNEHYPER** is true (e.g. 1). When **TUNEHYPER** is called the hyper-parameters are tuned using the search method specified by the input structure. Note that the user's problem is not searched, and the output structure will return the structures
OBJHYPER (and CONHYPER where appropriate) in addition to the objective function OBJ_CLF (and CST_CLF).

It is possible to tune the values of specific hyper-parameters with following values of TUNEHYPER:

   0   No tuning
   1   Tune THETA, EXP and LAMBDA
   2   Tune THETA and EXP
   3   Tune THETA and LAMBDA
   4   Tune THETA

If a value of TUNEHYPER greater than 1 is specified, and no user-defined hyper-parameters are supplied (via OBJHYPER or CSTHYPER), then initial values for all hyper-parameters will be generated but only the specified hyper-parameters will be tuned with the designated search method.

CHKPT_INTV: [optional] is an integer value that specifies the interval with which the search history is checkpointed to a MAT file. If parallel optimiser is used (OMETHD 2.8 or 4) CHKPT_INTV should be a multiple of MAXJOBS. If CHKPT_INTV equals 0 there will be no checkpointing (default). If OMETHD equals 4 CHKPT_INTV will contain the structure GA_VARS (once available) that will allow the genetic algorithm to be restarted.

CHKPT_FILE: [optional] specifies the file name that the checkpoint file is written (maximum length 20 characters). The default checkpoint file name is 'OptionsCHKPNT.mat'.

OPTUM1: [optional] A string describing the user-defined sequential optimisation routine to be called when OPTUM1 = 2.1 (maximum length 255 chars). The default value 'optum1' corresponds to the example implementation of a random optimiser (see help optum1 for more details).

Other valid STRUCTIN fields correspond to scalar Options control parameters documented in the Options manual (http://www.soton.ac.uk/~ajk/options.ps) sections 8.8 and 8.9. See also FAQ section 5.16. These control parameters include:

Output argument
The structure STRUCTOUT contains the following fields:

- **VARS**: The optimum design variables
- **OBJFUN**: The objective function value at VARS
- **CONS**: The constraint values at VARS

Following a direct search over the user's code the objective function and constraint search histories are returned to the user in sub-structures OBJTRC and CONSTRC (respectively). Following evaluation of a RSM search histories are returned in the field RSMTRC.

- **OBJTRC**: The history of evaluations of the objective function
  - **OBJTRC.NCALLS**: The number of objective function evaluations
  - **OBJTRC.OBJFUN**: The values of the objective function (a vector of length OBJTRC.NCALLS)
  - **OBJTRC.VARS**: The variables at which the objective function was evaluated (size NVARS by OBJTRC.NCALLS)

- **CONSTRC**: The history of evaluations of the constraints
  - **CONSTRC.NCALLS**: The number of constraint evaluations
  - **CONSTRC.CONS**: The values of the constraints (size NCONS by CONSTRC.NCALLS)
  - **CONSTRC.VARS**: The variables at which the constraints were evaluated (size NVARS by CONSTRC.NCALLS)
  - **CONSTRC.UCONS**: The upper limits to the constraints at each evaluation (size NVARS by CONSTRC.NCONS)
CONSTRC.LCONS: The lower limits to the constraints at each evaluation (size NCONS by CONSTRC.NCALLS)

If the field NUMUPDATE is specified in the input structure for a search over a RSM a sub-structure DOE_TRACE is returned containing suggested points that would improve the initial dataset.

DOE_TRACE: Suggested points that would improve the dataset
DOE_TRACE.NCALLS: The number of suggested update points
DOE_TRACE.VARS: The design variables

Following an optimisation over a RSM OptionsMatlab will return the search history in the following field of the output structure (OptionsMatlab 0.9.0+):

RSMTRC: Search history of points evaluated over a RSM
RSMTRC.NCALLS: The number of user specified points used
RSMTRC.VARS: The user-specified design points used
RSMTRC.OBJFUN: The value of the objective function RSM at the user-specified design points.
RSMTRC.CONS: The value of the problem constraint RSM at the user-specified design points.
RSMTRC.UCONS: The upper limits of the problem constraint at the user-specified design points.
RSMTRC.LCONS: The lower limits of the problem constraint at the user-specified design points.

If a genetic algorithm (OMETHD=4) is used OptionsMatlab will return the values of the GA variables that may be used to restart the genetic algorithm. This information is contained in the following field of the output structure:

GA_VARS: The GA restart variables
GA_VARS.GA_POP: The GA population design variable and fitness values
GA_VARS.GA_CODE: The final GA code string values
GA_VARS.GA_NRANDOM: The random number sequence used by the genetic algorithm.

Following an optimisation over approximate values of the objective and constraint functions using a Stochastic Process Model (OBJMOD and CONMOD respectively) the values and limits of the hyper-parameters will be returned. The hyper-parameters used to approximate values of the objective function will be returned in the structure
OBJHYPER, and the constraint hyper-parameters will be returning in the structure CONHYPER. The structures OBJHYPER and CONHYPER are identical to the optional fields of the input structure described above.

Notes
OptionsMatlab requires a valid Options licence file.

See also
optjob, createBeamStruct
**optjob**

Multiple objective function and constraint evaluation for OptionsMatlab

Optjob.m provides an example implementation of a broker for multiple objective function and constraint evaluations for OptionsMatlab. These evaluations are done in serial, other implementations of optjob support concurrent evaluations.

The optjob function to be used by OptionsMatlab must be set in the OPTJOB field of the structure passed to OptionsMatlab. The function name of user-defined objective function and constraint functions should be set in the OPTFUN and OPTCON fields for the structure passed to OptionsMatlab. If the OPTFUN and OPTCON fields are equal it is assumed that the objective function routine will return constraint values as the fifth output argument (see below).

The user-defined objective function called by optjob should conform to the following function prototype:

\[
\begin{align*}
[\text{eval}, gd, H, \text{PARAMS}, \text{CONS}, \text{U_CONS}, \text{L_CONS}] = & \text{opfun}(\text{VARS}, \text{PARAMS}, \\
& \text{U_CONS}, \text{L_CONS}, \text{DATA})
\end{align*}
\]

The user-defined constraint function called by optjob should conform to the following function prototype:

\[
\begin{align*}
[\text{CONS}, \text{ceq}, \text{GC}, \text{Gceq}, \text{PARAMS}, \text{U_CONS}, \text{L_CONS}] = & \text{objcon}(\text{VARS}, \\
& \text{PARAMS}, \text{U_CONS}, \text{L_CONS}, \text{DATA})
\end{align*}
\]

Reimplementing optjob

OPTJOB takes a matrix of size NJOBS by NVARS and returns a vector of function evaluations of length NJOBS. Other arguments include the names of the user-defined OPTFUN and OPTCON functions, as well as user defined parameters, constraints and upper and lower constraint limits.

The minimum required function prototype of the optjob function is:

\[
[\text{evals, cons}] = \text{optjob}(\text{optfunname, optconname, vars})
\]

where the input arguments are:
optfunname: the name of the user defined objective function
optconname: the name of the user defined constraint functions
vars: the matrix of design variables size NJOBS by NVARS (where NJOBS is the number of design points to be evaluated and NVARS the number of design variables)

where the output arguments are:
evals: a vector of NJOBS function evaluations
cons: a matrix of NJOBS by NCONS constraints

The complete function prototype of the optjob function is:

```
[evals,cons,params,u_cons,l_cons]=optjob(optfunnam, optconnam,vars,params,cons,u_cons,l_cons,data)
```
as above where additional input arguments are
params: a vector of size NPARAMS of user-defined parameters
cons: a vector of NCONS constraints at the design variables to be evaluated (applies only to a single function evaluation for OPTFUN only otherwise empty)
u_cons: a vector of size NCONS of the upper limits for the user defined constraints (where there is no limit set to inf)
l_cons: a vector of size NCONS of the lower limits for the user defined constraints (where there is no limit set to -inf)
data: the user-supplied data passed unaltered from the field USERDATA of the input structure

and as above where additional output arguments are:
params: a revised vector of size NPARAMS of user defined parameters
u_cons: a revised vector of size NCONS of the upper limits for the user defined constraints
l_cons: a revised vector of size NCONS of the lower limits for the user defined constraints

The optjob Matlab function is invoked from three places with OptionsMatlab, OPTJOB, OPTFUN andOPTCON, each of these FORTRAN subroutines will use the optjob function in a different fashion.

OPTJOB: Calls the optjob Matlab function for NJOBS function (and constraint) evaluations. Passes all of the available input parameters, apart from
the vector \texttt{cons} for which is substituted an empty array. The user-defined routine \texttt{optfun} must be called for each of the \texttt{NJOBS} designs supplied. If the problem is constrained the constraints will be can be evaluated by a combined objective/constraint function (where \texttt{optfunname == optconname}), or by a separate constraint function (defined by \texttt{optconname}). For unconstrained optimisations the argument \texttt{optconname} will be empty. \texttt{OPTJOB} requires the output arguments \texttt{evals} and \texttt{cons} to be returned, all other output arguments will be ignored.

\textbf{OPTFUN:} Calls the \texttt{optjob} Matlab function for a single function evaluation. Passes all of the available input parameters, apart from the string \texttt{optconnam} for which is substituted an empty string. The user-defined routine \texttt{optfunname} is called once. Requires the output argument \texttt{evals} to be returned, the \texttt{cons} output argument will be ignored, and the \texttt{params}, \texttt{u_cons} and \texttt{l_cons} output arguments will be used to update the corresponding values in the internal GENDAT database if returned.

\textbf{OPTCON:} Calls the \texttt{optjob} Matlab function for a single constraint evaluation. Passes all of the available input parameters, apart from the string \texttt{optfunnam} for which is substituted an empty string and the vector \texttt{cons} for which is substituted an empty array. The user-defined routine \texttt{optconname} is called once. Requires the output argument \texttt{cons} to be returned, the \texttt{evals} output argument will be ignored, and the \texttt{params}, \texttt{u_cons} and \texttt{l_cons} output arguments will be used to update the corresponding values in the internal GENDAT database if returned.

\textbf{See also}\n\texttt{OptionsMatlab}, \texttt{createBeamStruct}
Optjobparallel evaluates user defined objective and constraint functions in parallel. To evaluate the objective function the user must define two functions, the first which initiates the calculation of the objective function, and the second which returns the values of the objective function.

In practice the first function will typically perform a Globus GRAM job submission returning a handle which can be polled and an application specific job ID. The second function will typically use the application specific job ID to retrieve the output of the GRAM job and parse the objective function (and optionally the values of the constraints also).

The user-defined objective function called by optjobparallel to perform the job submission should conform to the following function prototype:

\[
\text{[JOBHANDLE, RETRIEVALID]} = \text{objfun} (\text{VARS, PARAMS, U_CONS, L_CONS, DATA})
\]

where JOBHANDLE is a GRAM job handle which can be polled by gd_jobpoll, and RETRIEVALID is an identifier used by retrieve the results. If JOBHANDLE is empty it will not be polled. The only mandatory input argument is VARS, the other input arguments PARAMS, U_CONS, L_CONS and DATA are all optional.

This function must be specified in the OPTFUN field of the OptionsMatlab input structure.

A second retrieval function is be defined to return the value of the objective function. This function must have the same name as the job submission function appended with '_parse'. For example when the objective function submission function is saved in the file 'objfun.m' the retrieval function must be saved in the file 'objfun_parse.m'.

The retrieval function should conform to the following function prototype:

\[
\text{[EVAL, PARAMS, CONS, U_CONS, L_CONS]} = \text{objfun_parse} (\text{RETRIEVALID})
\]

where RETRIEVALID is the identifier returned by the job submission function.
EVAL is the value of the objective function. The other output arguments PARAMS, CONS, U_CONS and L_CONS are all optional. CONS is the value of the constraints.

If the value of the constraints and the objective function are return by the same function the field OPTCON should be set to equal OPTFUN. Alternatively if the constraints are evaluated independently of the objective function the user may also define two separate functions to perform the job submission and to parse the constraints. In this case the functions indicated by the field OPTCON should conform to the following function prototypes:

\[
\begin{align*}
\text{[JOBHANDLE, RETRIEVALID]} &= \text{objcon}(VARS, \text{PARAMS}, U\_\text{CONS}, L\_\text{CONS}, \text{DATA}) \\
\text{[CONS, PARAMS, U\_CONS, L\_CONS]} &= \text{objcon\_parse}(\text{RETRIEVALID})
\end{align*}
\]

See also

optjob, OptionsMatlab, optjobparallel2
Multiple objective function and constraint evaluation for OptionsMatlab

optjobparallel2 evaluates user defined objective and constraint functions in parallel. To evaluate the objective function the user must define two functions, the first which initiates the calculation of the objective function, and the second which determines the state of the job and, if complete, return the value of the objective or constraint functions.

The user-defined objective function called by optjobparallel2 to perform the job submission should conform to the following function prototype:

\[
\text{RETRIEVALID} = \text{objfun}(\text{VARS,PARAMS,U_CONS,L_CONS,DATA})
\]

where RETRIEVALID is an identifier used by retrieve the results, for example this may be a structure containing a number of fields. The only mandatory input argument is VARS, the other input arguments PARAMS, U_CONS, L_CONS and DATA are all optional.

This function must be specified in the OPTFUN field of the OptionsMatlab input structure.

A second retrieval function is be defined to determine whether the job has completed, and if so return the value of the objective function. This function must have the same name as the job submission function appended with 'parse2'. For example, when the objective function submission function is saved in the file 'objfun.m' the retrieval function must be saved in the file 'objfun_parse2.m'.

The retrieval function should conform to the following function prototype:

\[
[\text{EVAL,PARAMS,CONS,U_CONS,L_CONS}]=\text{objfun_parse2}(\text{RETRIEVALID})
\]

where RETRIEVALID is the identifier returned by the job submission function. EVAL is the value of the objective function (or empty if the job has not completed). The other output arguments PARAMS, CONS, U_CONS and L_CONS are all optional. CONS is the value of the constraints.

This function should determine whether the job has completed. If the job has completed the value of EVAL (and that of CONS) should be returned. If the job is still running the function should return an empty value for EVAL (i.e. EVAL = []).
which case the status of other jobs will be determined before the '_parse2' function
is invoked again for this job. If the job has failed a suitable bad point indicator should
be returned.

If the value of the constraints and the objective function are return by the same
function the field 'OPTCON' should be set to equal 'OPTFUN'. Alternatively if the
constraints are evaluated independently of the objective function the user may also
define two separate functions to perform the job submission and to parse the
constraints. In this case the functions indicated by the field 'OPTCON' should
conform to the following function prototypes:

\[
\begin{align*}
\text{RETRIEVALID} &= \text{objcon}(\text{VARS,PARAMS,U_CONS,L_CONS,DATA}) \\
[\text{CONS,PARAMS,U_CONS,L_CONS}] &= \text{objcon}_\text{parse2}(\text{RETRIEVALID})
\end{align*}
\]

**See also**

[optjob, OptionsMatlab]
**optum1**

Example user-defined sequential optimiser for OptionsMatlab

optum1 is a random sequential optimiser that demonstrates how to define an arbitrary optimisation strategy to be invoked by OptionsMatlab. This optimiser can be invoked by specifying the fields OMETHD = 2.1 and OPTUM1 = 'optum1' in the input structure of OptionsMatlab.

To implement your own optimiser your function should conform to the following function prototype. User-defined optimisers should minimise the objective function irrespective of the search direction specified by the input structure.

**Syntax**

```matlab
[VARS, STOPOPT] = OPTUM1(VARS, FVAL, CONS, UVARS, LVARS, UCONS, LCONS, MAXCALLS, CALLNUM, TOL, STEPSIZE, OLEVEL)
```

**Description**

```matlab
[VARS, STOPOPT] = OPTUM1(VARS, FVAL, CONS, UVARS, LVARS, UCONS, LCONS, MAXCALLS, CALLNUM, TOL, STEPSIZE, OLEVEL)
```

where the meaning of the input arguments are:

- **VARS** vector containing the last evaluated value of VARS
- **FVAL** objective function value at VARS
- **CONS** vector of constraint values at VARS (empty if unconstrained)
- **UVARS** vector of upper limits for VARS
- **LVARS** vector of lower limits for VARS
- **UCONS** vector of upper limits for CONS (may vary)
- **LCONS** vector of lower limits for CONS (may vary)
- **MAXCALLS** maximum number of function evaluations, must be honoured by your implementation of optum1
- **CALLNUM** number of iterations performed
- **TOL** requested tolerance of the optimiser
- **STEPSIZE** requested step-size of the optimiser
- **OLEVEL** requested output level of the optimiser

where the meaning of the output arguments are:

- **VARS** vector containing the next value of VARS to be evaluated. If STOPOPT indicates that the optimiser is complete VARS should contain the minimum variable values detected by the optimiser
STOPOPT a flag indicating the whether the optimiser has completed. The optimiser will run whilst \texttt{STOPOPT} = 0, and will complete when \texttt{STOPOPT} = 1 is returned. If \texttt{STOPOPT} is not set to 1 the optimiser will run indefinitely.

**Example**
This example invokes the user-defined optimiser defined by \texttt{optum1} over the Beam problem.

```matlab
input = createBeamStruct;
input.NITERS = 20;
input.OMETHD = 2.1;
input.OPTUM1 = 'optum1';
output = OptionsMatlab(input);
optimisationTrace(output,input,3)
```

![Figure 20 Trace produced by random optimiser optum1](image)

**See also**

\texttt{OptionsMatlab}
Peaks4d problem

A four dimension problem based upon the Matlab `peaks` function.

Example

This example plots the objective function surface of the Peaks4D problem.

```matlab
>> input = createpeaks4dstruct(2.8);
>> input.MC_TYPE = 4;
>> input.NITERS = 500;
>> input.UVARS = [3,3,0.01,0.01]; % hold vars 3 and 4 constant
>> output = OptionsMatlab(input)
```

```
output =

 VARS: [4x1 double]
 OBJFUN: 7.4643
 CONS: 0
 OBJTRC: [1x1 struct]
 CONSTRC: [1x1 struct]
```

```matlab
>> optimisationTerrain(output,input,3)
```

Figure 21 The valid objective function surface of the Peaks4d problem
Functions

peaks4d objective function
createpeaks4dstruct creates an input structure for the peaks4d problem
5 Frequently Asked Questions

5.1 Why does Matlab crash when I call OptionsMatlab?

When OptionsMatlab is invoked with an invalid Gendat license file the error message below will be printed:

```
>> input = createBeamStruct;
>> output = OptionsMatlab(input);

??? Optimization failed. OPTIONS Error code: -2147483648
```

Gendat license files may be invalid if they have expired, or if they contain incorrect machine details.

Write statements by some of the third party algorithms available within the Options have also caused OptionsMatlab to crash. These can be diagnosed by examining the temporary files generated by OptionsMatlab; .OPTIONS*.opt and .OPTSDTO*.opt. In some cases this behaviour can be ameliorated by reducing the output level of OptionsMatlab, OLEVEL = 0.

When creating a new problem definition conflicts between user-specified design variable, parameter or constraint names can cause OptionsMatlab to crash. Conflicts occur when there is an ambiguity between a variable name and the name of an existing Options variable. For example the variable name FACT would be ambiguous if the parameter FACTOR had previously been defined. If a variable name conflict has caused Matlab to crash this may be diagnosed by examining the temporary file .OPTIONS*.opt.

Please report any reoccurring problems to me by email. Bugs are documented in the buglists included in the OptionsMatlab distribution.

5.2 How do I specify the search method?

The search method is specified by the field OMETHD of the Options input structure. The scalar values correspond to the search methods listed below. For more details of each of the search methods please see the Options manual [1].
0.0  to just evaluate the user’s problem code at the point specified
1.1  for OPTIVAR routine ADRANS
1.2  for OPTIVAR routine DAVID
1.3  for OPTIVAR routine FLETCH
1.4  for OPTIVAR routine JO
1.5  for OPTIVAR routine PDS
1.6  for OPTIVAR routine SEEK
1.7  for OPTIVAR routine SIMPLX
1.8  for OPTIVAR routine APPROX
1.9  for OPTIVAR routine RANDOM
2.1  for user specified routine OPTUM1
2.2  for user specified routine OPTUM2
2.3  for NAG routine E04UCF
2.4  for bit climbing
2.5  for dynamic hill climbing
2.6  for population based incremental learning
2.7  for numerical recipes routines
2.8  for design of experiment based routines
3.11 for Schwefel library Fibonacci search
3.12 for Schwefel library Golden section search
3.13 for Schwefel library Lagrange interval search
3.2  for Schwefel library Hooke and Jeeves search
3.3  for Schwefel library Rosenbrock search
3.41 for Schwefel library DSCG search
3.42 for Schwefel library DSCP search
3.5  for Schwefel library Powell search
3.6  for Schwefel library DFPS search
3.7  for Schwefel library Simplexsearch
3.8  for Schwefel library Complexsearch
3.91 for Schwefel library two-membered evolution strategy
3.92 for Schwefel library multi-membered evolution strategy
4    for genetic algorithm search
5    for simulated annealing
6    for evolutionary programming
5.3 How do I run a Design of Experiments?
A Design of Experiments search can be used to efficiently sample points across the multi-dimensional parameter space represented by large numbers of design variables. A Design of Experiments search can be invoked by setting \texttt{OMETHD = 2.8}. The number of points to be evaluated can be configured by altering the input structure field \texttt{NITERS}.

A number of different Design of Experiments search methods are available within the Options package. These can be configured using the optional input field \texttt{MC\_TYPE}, where:

1. Random (default)
2. \textit{LP} $\tau$
3. Central composite and \textit{LP} $\tau$
4. Full factorial and \textit{LP} $\tau$
5. Latin hypercubes
6. Cell-based latin hypercubes
7. User supplied candidate points

For more details about these Design of Experiments search methods please consult the Options manual [1].

User supplied candidate points to be evaluated during a Design of Experiments can be supplied with the optional input field \texttt{DOE\_TRACE} when the control parameter \texttt{MC\_TYPE = 7}. \texttt{DOE\_TRACE} requires two mandatory fields:

- \texttt{DOE\_TRACE.NCALLS} containing the number of user-supplied DOE points
- \texttt{DOE\_TRACE.VARS} the design points to be evaluated during the DOE (size \texttt{NVARS} by \texttt{DOE\_TRACE.NCALLS})

When using user supplied candidate points \texttt{NITERS} must equal \texttt{DOE\_TRACE.NCALLS} plus one as the Design of Experiments will first evaluate the design point specified by \texttt{VARS}. 

for evolution strategy

For more details about these Design of Experiments search methods please consult the Options manual [1].

User supplied candidate points to be evaluated during a Design of Experiments can be supplied with the optional input field \texttt{DOE\_TRACE} when the control parameter \texttt{MC\_TYPE = 7}. \texttt{DOE\_TRACE} requires two mandatory fields:

- \texttt{DOE\_TRACE.NCALLS} containing the number of user-supplied DOE points
- \texttt{DOE\_TRACE.VARS} the design points to be evaluated during the DOE (size \texttt{NVARS} by \texttt{DOE\_TRACE.NCALLS})

When using user supplied candidate points \texttt{NITERS} must equal \texttt{DOE\_TRACE.NCALLS} plus one as the Design of Experiments will first evaluate the design point specified by \texttt{VARS}.
5.4 How do I build a Response Surface Model?

A Response Surface Model is used to approximate the value of objective or constraint functions based upon the results of direct evaluation of the user’s model. Response Surface Models can be built independently over the objective and constraints, and are configured using the optional input fields `OBJMOD` and `CONMOD` respectively. If these fields are not set `OptionsMatlab` will directly evaluate the user supplied objective and constraint functions.

A number of Response Surface Model methods are available to be used to approximate the values of the objective function and constraints. The possible settings for the optional input fields `OBJMOD` and `CONMOD` are:

1.0 for a Shepard response surface model
2.1 for linear Radial Basis Function
2.2 for thin plate Radial Basis Function
2.3 for cubic splines Radial Basis Function
2.4 for cubic splines Radial Basis Function with regression via reduced bases
3.1 for mean polynomial regression model
3.2 for first order polynomial regression model
3.3 for first order polynomial regression model plus squares
3.4 for first order polynomial regression model plus products (cross-terms)
3.5 for second order polynomial regression model
3.6 for second order polynomial regression model plus cubes
4.1 for a Stochastic Process Model
4.2 for the root mean square error of the Stochastic Process Model
4.3 for the expected improvement of the Stochastic Process Model
4.31 for the expected improvement of the constrained Stochastic Process Model [requires CONMOD=4.1]
4.32 for the feasibility of improvement of the constrained Stochastic Process Model [requires CONMOD=4.1]
4.33 for the probability of improvement of the Stochastic Process Model
0.0 if the underlying user supplied function is to be called.
5.5 How do I plot my Response Surface Model?

Following OptionsMatlab version 0.9.0+ search histories are available for optimisations which are run over a Response Surface Model in the output structure field RSMTRC. Previously OptionsMatlab would only return a search history when candidate points were provided.

To evaluate a factorial search of the RSM that is suitable for plotting it may be appropriate to evaluate a list of candidate points. The candidate points must be provided in a field DOE_TRACE of the input structure (see section 5.3). In versions of OptionsMatlab 0.9.0+ it is necessary to specify that the optimisation is a candidate points Design of Experiments (OMETHD=2.8, MC_TYPE=7).

```matlab
>> %Create the initial dataset
>> DOEinput = createBeamStruct;
>> DOEoutput = OptionsMatlab(DOEinput);
>> %Define a RSM input structure
>> RSMinput = createBeamStruct;
>> RSMinput.OBJMOD = 3.3;
>> RSMinput.CONMOD = 3.3;
>> %Create a list of candidate points to be evaluated
>> ii = linspace(DOEinput.LVARS(1),DOEinput.UVARS(1),10);
>> jj = linspace(DOEinput.LVARS(2),DOEinput.UVARS(2),10);
>> [x,y] = meshgrid(ii,jj);
>> RSMinput.DOE_TRACE.VARS(1,:) = reshape(x,1,prod(size(x)));
>> RSMinput.DOE_TRACE.VARS(2,:) = reshape(y,1,prod(size(y)));
>> RSMinput.DOE_TRACE.NCALLS = prod(size(x));
>> %Define the search a candidate points DoE
>> RSMinput.OMETHD = 2.8;
>> RSMinput.MC_TYPE = 7;
>> RSMoutput = OptionsMatlab(RSMinput, DOEoutput);
>> disp(RSMoutput.RSMTRC)
```
The contents of RSMTRC can then be plotted to show the surface of the Response Surface Model.

>> optimisationTerrain(RSMoutput, RSMinput);

![Plotting approximate values of the Beam objective function generated by a RSM](image)

Figure 22 Plotting approximate values of the Beam objective function generated by a RSM

The utility function optimisationSampleRSM automates the process of sampling a RSM built over the user’s problem.

### 5.6 How do I generate Design of Experiment update points?

It is possible to improve the quality of a Response Surface Model by improving to original dataset by selectively adding new points. The Genetic Algorithm (OMETHD = 4) and Dynamic Hill Climbing (OMETHD = 2.5) optimisation algorithms, when run over a Response Surface Model, are capable of returning a list of points that would
improve the dataset.

Update points will be returned if the OptionsMatlab input structure contains the optional field NUMUPDATE. The value of NUMUPDATE is a scalar which determines the number of update points to be returned when a search routine is run over a RSM. The update points will be returned in the field DOE_TRACE of the output structure.

In the following example a Genetic Algorithm is run over a RSM generated from the search history contained in the structure DOEoutput. NUMUPDATE is set to equal 10, meaning that the Genetic Algorithm will suggest ten update points at which the original data set can be improved.

Note that the optimisation algorithm may return less than NUMUPDATE update points, in this case the remaining elements of DOE_TRACE.VARS will contain zeros.

```matlab
>> %Create the initial dataset
>> DOEinput = createBeamStruct;
>> DOEoutput = OptionsMatlab(DOEinput);
>> %Define a RSM input structure
>> RSMinput = createBeamStruct;
>> RSMinput.OMETHD = 4;
>> RSMinput.OBJMOD = 3.3;
>> RSMinput.CONMOD = 3.3;
>> RSMinput.NUMUPDATE = 10;
>> RSMoutput = OptionsMatlab(RSMinput, DOEoutput);
>> disp(RSMoutput.DOE_TRACE)
```

```
NCALLS: 10
VARS: [2x10 double]
```

The update points contained in the field DOE_TRACE of the structure RSMoutput can now be used as candidate points for a second Design of Experiments study.

```matlab
>> DOEinput2 = createBeamStruct;
>> DOEinput2.OMETHD = 2.8;
>> DOEinput2.MC_TYPE = 7;
>> DOEinput2.DOE_TRACE = RSMoutput.DOE_TRACE;
```
>> DOEinput2.NITERS = RSMoutput.DOE_TRACE.NCALLS+1;
>> DOEoutput2 = OptionsMatlab(DOEinput2);

Note that DOEinput2.NITERS must equal DOEinput2.DOE_TRACE.NCALLS plus one as the Design of Experiments will first evaluate the design point specified by DOEinput2.VARS.

5.7 How do I define an unconstrained optimisation?
From version 0.5 of OptionsMatlab onwards users do not have to define a null constraint function for unconstrained optimisation problems. To indicate that an optimisation problem is unconstrained the field NCONS should be set to 0. In this case the fields CNAM, LCONS, UCONS, CONS and OPTCON are not mandatory and will be ignored.

5.8 How do I write my own objective and constraint functions?
The default implementation of OPTJOB (optjob.m) requires user-defined objective and constraint functions to conform to well-defined interfaces. These interfaces are design to be compatible with objective and constraint functions used with the Matlab Optimization Toolbox [4].

The full function signature for the user-defined objective function is:

    [eval, gd, H, PARAMS, CONS, U_CONS, L_CONS] = objfun(VARS, PARAMS, U_CONS, L_CONS, DATA)

Where eval is the value of the objective function at the design variables VARS. The objective function corresponding to this header can return the constraint values for the design point, CONS, and also alter the values of the parameters, PARAMS, and constraint limits U_CONS and L_CONS. The argument DATA contains the Matlab variable contained in the optional USERDATA field of the input structure. The parameters gd and H are relevant to the Matlab Optimization Toolbox [4] and are not used by OptionsMatlab.

**NOTE:** The full function signature for user-defined objective function has changed in OptionsMatlab version 0.7. In earlier versions the third optional input argument was CONS, the value of the constraints at VARS. However this feature was unreliable and
The minimum function signature required by `optjob.m` is:

```matlab
 eval = objfun(VARS)
```

The full function signature for the user-defined constraint function is:

```matlab
[CONS,ceq,GC,Gceq,PARAMS,U_CONS,L_CONS]=objcon(VARS,PARAMS,U_CONS,L_CONS,DATA)
```

Where `CONS` are the constraint values at the design variables `VARS`. The parameters `ceq`, `GC` and `Gceq` are relevant to the Matlab Optimization Toolbox [4] and are not used by OptionsMatlab.

Again the minimum function signature required by `optjob.m` is a lot smaller:

```matlab
 CONS = objcon(VARS)
```

Alternative implementations of `OPTJOB` may require different function signatures from user-defined objective and constraint functions. Please consult the documentation of alternative implementations of `OPTJOB` to confirm that your objective and constraint functions conform to the requirements.

Note that the OptionsMatlab may ignore altered values of the parameters, `PARAMS`, and constraint limits `U_CONS` and `L_CONS` if it is not appropriate to change them, for example during a Design of Experiments.

### 5.9 How do I evaluate a combined objective and constraint function?

The default implementation of `OPTJOB` (`optjob.m`) supports combined objective and constraint functions. The combined function must conform to following objective function signature:

```matlab
 [eval,gd,H,PARAMS,CONS,...] = objfun(VARS,...)
```

`optjob.m` will evaluate this function once when evaluating objective and constraint
functions if the input fields `OPTFUN` and `OPTCON` specify the same function.

**NOTE:** The full function signature for user-defined objective function has changed in OptionsMatlab version 0.7. In earlier versions the third optional input argument was `CONS`, the value of the constraints at `VARS`. However this feature was unreliable and has been removed. Please update objective functions that use the earlier form of the function signature.

### 5.10 Can OptionsMatlab calculate function evaluations in parallel?

The standard OptionsMatlab job manager, `optjob.m`, will evaluate the objective and constraint functions sequentially. However a parallel job manager, `optjobparallel2`, is included in the OptionsMatlab distribution (this supersedes the parallel job manager `optjobparallel`). When your objective or constraint function is expensive and you wish to use a search method with inherent parallelism it may be more considerably efficient to use the parallel job manager.

To run the demo of parallel objective function evaluations enter the following commands:

```matlab
>> input = createBeamStructParallel2
>> output = OptionsMatlab(input)
```

To make your objective and constraint functions available to `optjobparallel2` different function signatures are required to those described in section 5.8. To evaluate the objective function the user must define two functions, the first which initiates the calculation of the objective function, and a second which determines whether the calculation has completed, and if so returns the value of the objective function.

In practice the first function could perform a Globus GRAM job submission [5] returning a handle which can be used to query the status of the job, and an application specific job ID. The second function will typically use the application specific job ID to retrieve the output of the GRAM job and parse the objective function (and optionally the values of the constraints also). The interaction between these functions is shown by Figure 23.
Figure 23 Parallel objective function evaluation in OptionsMatlab. Objfun.m is called ten times to begin the objective function evaluation at ten points. When these jobs are complete objfun_parse2.m is called ten times to retrieve and parse the results.

The user-defined objective function called by optjobparallel2 to perform the job submission should conform to the following function prototype:

\[
[\text{RETRIEVALID}] = \text{objfun}(\text{VARS}, \ldots)
\]

where \text{RETRIEVALID} is an identifier used to determine the status of the job, and to retrieve the results. The only mandatory input argument is \text{VARS}, the other input arguments \text{PARAMS}, \text{U_CONS} and \text{L_CONS} are all optional. This function must be specified in the \text{OPTFUN} field of the OptionsMatlab input structure.

A second retrieval function is be defined to return the value of the objective function. This function must have the same name as the job submission function appended with '_parse2'. For example when the objective function submission function is saved in the file 'objfun.m' the retrieval function must be saved in the file 'objfun_parse2.m'.

The retrieval function should conform to the following function prototype:

\[
[\text{EVAL}, \text{PARAMS}, \text{CONS}, \text{U_CONS}, \text{L_CONS}] = \text{objfun_parse2}(\text{RETRIEVALID})
\]

where \text{RETRIEVALID} is the identifier returned by the job submission function. \text{EVAL} is the value of the objective function (or empty if the job has not completed). The
other output arguments PARAMS, CONS, U_CONS and L_CONS are all optional. CONS is the value of the constraints.

If the value of the constraints and the objective function are returned by the same function the field OPTCON should be set to equal OPTFUN. Alternatively if the constraints are evaluated independently of the objective function the user may also define two separate functions to perform the job submission and to parse the constraints. In this case the functions indicated by the field OPTCON should conform to the following function prototypes:

\[
\begin{align*}
\text{[JOBHANDLE] } & = \text{ objcon(VARS,PARAMS,U_CONS,L_CONS)} \\
\text{[CONS,PARAMS,U_CONS,L_CONS] } & = \text{ objcon_parse2(RETRIEVALID)}
\end{align*}
\]

**5.11 How do I tune the hyper-parameters for a stochastic process model RSM?**

Instead of searching the user’s problem OptionsMatlab can be used to tune the hyper-parameters for a stochastic process model RSM. This can be done by setting up the OptionsMatlab input structure as though you are going to build a RSM (see section 5.4) over an existing search history. Hyper-parameter tuning is specified by setting the input structure field TUNEHYPER equal to 1.

When TUNEHYPER is set the hyper-parameters are tuned using the search method specified by the input structure. The output structure will return the structures OBJHYPER (and/or CONHYPER where appropriate) in addition to the final value of the concentrated likelihood function which is used as the objective function OBJ_CLF (or CST_CLF). Note that the user’s problem is not searched, and no optimum for the user’s problem is returned.

To use the tuned hyper-parameters to build and search a RSM, or to further tune the hyper-parameters, the structures OBJHYPER and CONHYPER can be passed as fields in the OptionsMatlab input structure. These structures contain the hyper-parameter values, and upper and lower limits to these values.

The example below demonstrates hyper-parameter tuning by performing the following steps:

- training hyper-parameters over a data set
- refining hyper-parameters with further training
- searching a RSM with user supplied hyper-parameters
- searching a RSM with starting at the previous 'best-point'

This example uses the Beam problem.

```matlab
% Build initial dataset
input1 = createBeamStruct;
input1.OMETHD = 2.8; %Design of Experiments
input1.NITERS = 50; %Number of iterations
input1.OLEVEL = 2;
input1.MC_TYPE = 4; %Full factorial DoE
output1 = OptionsMatlab(input1)

output1 =

 VARS: [2x1 double]
 OBJFUN: 3.6877e+003
 CONS: [5x1 double]
 OBJTRC: [1x1 struct]
 CONSTRC: [1x1 struct]

% Tune hyper-parameters with SA
input2 = createBeamStruct;
input2.OLEVEL = 2;
input2.OBJMOD = 4.1; %Tune Stochastic Process Model
input2.OBJMOD = 4.1; %hyper-parameters over the objective
 %Tune Stochastic Process Model
 %function
input2.CONMOD = 4.1; %Tune Stochastic Process Model
input2.TUNEHYPER = 1; %Tune the hyper-parameters
input2.OMETHD = 5; %(do not search the user's problem)
output2 = OptionsMatlab(input2, output1)
```
% Further train user-supplied hyper-parameters with GA
input3 = input2;
% Note that if OBJHYPER or CONHYPER are provided these
% hyper-parameters will be used in preference to those
% generated by OPTRSS
input3.OBJHYPER = output2.OBJHYPER;
input3.CONHYPER = output2.CONHYPER;
input3.OMETHD = 4;
output3 = OptionsMatlab(input3, output1)

% Search RSM using user-supplied hyper-parameters
input4 = input1;
input4.OBJMOD = 4.1;
input4.CONMOD = 4.1;
input4.OBJHYPER = output3.OBJHYPER;
input4.CONHYPER = output3.CONHYPER;
input4.OMETHD = 5;
input4.NITERS = 5000;
input4.OLEVEL = 2;
output4 = OptionsMatlab(input4, output1)
output4 =

    VARS: [2x1 double]
    OBJFUN: 2.1522e+003
    CONS: [5x1 double]
    OBJHYPER: [1x1 struct]
    CONHYPER: [1x1 struct]

% Search RSM using user-supplied hyper-parameters at the
% previous best point
input5 = input4;
input5.OMETHD = 4;
input5.NITERS = 50;
% Reset starting point to previous best
input5.VARS = output4.VARS';
output5 = OptionsMatlab(input5, output1)

output5 =

    VARS: [2x1 double]
    OBJFUN: 2.4426e+003
    CONS: [5x1 double]
    OBJHYPER: [1x1 struct]
    CONHYPER: [1x1 struct]

For more details on the stochastic process model and hyper-parameter tuning see chapter 10 of the Options manual [1].

### 5.12 Can I checkpoint the progress of an optimisation?

During a lengthy optimisation it can be reassuring to checkpoint its progress. OptionsMatlab can write the current objective function and constraint search histories to file following a call to `OPTJOB`. Checkpointing can be switched on by setting the checkpoint interval in the field `CHKPT_INTV` of the input structure (`CHKPT_INTV` should be a multiple of `MAXJOBS`).
When checkpointing is used the search histories for the objective function and constraint search histories are written to file. The file format used is the binary Matlab .MAT format. The file name can be specified with the optional field CHKPT_FILE of the input structure.

5.13 How do I pass Matlab variables to my objective function?

OptionsMatlab supports the optional input structure field USERDATA. This field can be used to pass any Matlab variable (including structures or cell arrays) to the user-defined objective and constraint functions. To use the information contained within USERDATA in your objective function you must you must accept a sixth input argument DATA (see section 5.8). To access the variable from a separate constraint function the constraint function must accept a fifth input argument DATA.

Please note that the USERDATA field is supported by the OPTJOB functions supplied with OptionsMatlab (optjob.m and optjobparallel.m), however the USERDATA field may not be supported by older OPTJOB functions.

5.14 How do I define discrete design variables?

By default design variables in OptionsMatlab are contiguous between upper and lower limits; however it is possible to specify discrete values for one or more of the design variables. To use discrete variables the fields NDVRS and DVARS of the input structure must be configured appropriately.

The field NDVRS must be set equal to the maximum number of discrete design variable values for any single design variable. In the example below one of the design variables has three possible discrete states, whilst the second is contiguous; therefore we set NDVRS equal to 3.

The field DVARS is a matrix of size NVRS by NDVRS which contains the discrete design variable values for each of the design variables. Therefore in the example below the three possible discrete states of the first design variable are place in the first row of DVARS. Because the second design variable is contiguous all values of the second row are set equal to DNULL. If a design variable has fewer possible discrete values fewer than NDVRS, the remaining elements of DVARS should be set to DNULL.
The example below illustrates the use of discrete design variable values with the *Banana problem*.

```
>> % Create an unconstrained input structure
>> input = createbananastruct;
>> % Set the maximum number of discrete variable states
%(between all design variables)
>> input.NDVRS = 3;
>> % Resize the matrix of discrete design variable values (set
to DNULL for contiguous design variables)
>> input.DVARS = ones(input.NVRS, input.NDVRS) * input.DNULL;
>> % Set discrete values for the first design variable (the
second design variable will remain contiguous)
>> input.DVARS(1,:) = [0, 0.5, 1]
>> disp(input.DVARS)

 0 0.5000 1.0000
 -777.0000 -777.0000 -777.0000

>> % Run the optimisation
>> results = OptionsMatlab(input);
>> % Plot the output of the optimisation to demonstrate
discrete variables
>> optimisationTrace(results, input, 1, 1, [-37.5, 30], [], 1)
```
5.15 How do I restart a Genetic Algorithm?

The structure GA_VARS, which is contained in the OptionsMatlab output and checkpoint structures when a Genetic Algorithm is used (OMETHD = 4), allows the user to restart a Genetic Algorithm from its previous state. The following example demonstrates a Genetic Algorithm restarted from the output of an earlier calculation:

```matlab
>> % Run a Genetic Algorithm
>> input1 = createBeamStruct;
>> input1.NITERS = 500;
>> input1.OMETHD = 4;
>> input1.GA_NPOP = 50;
>> output1 = OptionsMatlab(input1)
```
output1 =

    VARS: [2x1 double]
OBJFUN: 2.6884e+003
    CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]
    GA_VARS: [1x1 struct]

>> %Restart a Genetic Algorithm
>> input2 = input1;
>> input2.GA_VARS = output1.GA_VARS;
>> input2.NITERS = 50;
>> output2 = OptionsMatlab(input2)

output2 =

    VARS: [2x1 double]
OBJFUN: 2.6884e+003
    CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]
    GA_VARS: [1x1 struct]

>> %Plot the history of the two optimisations
>> optimisationHistory([output1, output2], {'First run',
    'Second run'})
Figure 25 A Genetic Algorithm restarted following 500 iterations is already adapted to the objective function surface

5.16 What is the meaning of the optional control parameters?

Table 1 contains the meaning and default value of the optional control parameters. Since the meaning of the control parameters may differ depending upon the optimisation method in use the control parameters are organised with respect to the optimisation method.

<table>
<thead>
<tr>
<th>Optimisation Method</th>
<th>Control Parameter</th>
<th>Meaning</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Surface Modelling</td>
<td>FUSION_TYP</td>
<td>Flag to indicate RSM fusion type (differences=0, ratios=1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CST_BAD_PT</td>
<td>The outer limit of acceptable constraint function values in RSMs</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>OBJ_BAD_PT</td>
<td>The outer limit of acceptable objective function values in RSMs</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>RSM_EIF_W</td>
<td>The weighting between exploitation and exploration used when applying expected improvement methods in RSM</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>RSM_NCSKIP</td>
<td>Number of radial basis functions skipped for constraints</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RSM_NSKIP</td>
<td>Number of radial basis functions skipped for objective function</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RSM_NULL_T</td>
<td>Percentage worsening required in RBF regression to halt fitting</td>
<td>10%</td>
</tr>
<tr>
<td>1.1 OPTIVAR routine ADRANS</td>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>OPT_C_TOL</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>0.001</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>OVR_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
<td></td>
</tr>
<tr>
<td>OVR_PENAL</td>
<td>Selects the kind of penalty function used by a number of the OPTIVAR routines:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = one pass external</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Fiacco-McCormick</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Powell</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Schuldt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVR_SEED</td>
<td>Sets the seed for random number sequences</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>

### 1.2 OPTIVAR routine DAVID

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTOL</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>0.001</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>1.00E-06</td>
</tr>
<tr>
<td>OVR_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
<tr>
<td>OVR_PENAL</td>
<td>Selects the kind of penalty function used by a number of the OPTIVAR routines:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = one pass external</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Fiacco-McCormick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Powell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Schuldt</td>
<td></td>
</tr>
<tr>
<td>OVR_CONV</td>
<td>Sets the convergence criterion</td>
<td>1D-4/1D-5</td>
</tr>
</tbody>
</table>

### 1.3 OPTIVAR routine FLETCH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTOL</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>0.001</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>1.00E-06</td>
</tr>
<tr>
<td>OVR_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
<tr>
<td>OVR_PENAL</td>
<td>Selects the kind of penalty function used by a number of the OPTIVAR routines:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = one pass external</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Fiacco-McCormick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Powell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Schuldt</td>
<td></td>
</tr>
<tr>
<td>OVR_CONV</td>
<td>Sets the convergence criterion</td>
<td>1D-4/1D-5</td>
</tr>
</tbody>
</table>

### 1.4 OPTIVAR routine JO

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTOL</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>1.00E-06</td>
</tr>
<tr>
<td>OVR_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
<tr>
<td>OVR_PENAL</td>
<td>Selects the kind of penalty function used by a number of the OPTIVAR routines:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = one pass external</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Fiacco-McCormick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Powell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Schuldt</td>
<td></td>
</tr>
<tr>
<td>OVR_CONV</td>
<td>Sets the convergence criterion</td>
<td>1D-4/1D-5</td>
</tr>
</tbody>
</table>

### 1.5 OPTIVAR routine PDS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTOL</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>0.1</td>
</tr>
<tr>
<td>OVR_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
<tr>
<td>OVR_PENAL</td>
<td>Selects the kind of penalty function used by a number of the OPTIVAR routines:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = one pass external</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Fiacco-McCormick</td>
<td></td>
</tr>
</tbody>
</table>
| **1.6 OPTIVAR routine SEEK** | **OVR_CONV** | 3 = Powell  
4 = Schuldt  
Sets the convergence criterion | 1D-4/1D-5 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OPT_TOL</strong></td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>OPT_CTOL</strong></td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
<td></td>
</tr>
<tr>
<td><strong>OPT_STEP</strong></td>
<td>The step size used</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td><strong>OVR_MAND</strong></td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
<td></td>
</tr>
</tbody>
</table>
| **OVR_PENAL** | Selects the kind of penalty function used by a number of the OPTIVAR routines:  
1 = one pass external  
2 = Fiacco-McCormick  
3 = Powell  
4 = Schuldt | 1 |
| **OVR_STOP** | sets the minimum step length stopping criterion | 0.01 |

| **1.7 OPTIVAR routine SIMPLX** | **OVR_CONV** | 3 = Powell  
4 = Schuldt  
Sets the convergence criterion | 1D-4/1D-5 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OPT_TOL</strong></td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>OPT_CTOL</strong></td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
<td></td>
</tr>
<tr>
<td><strong>OPT_STEP</strong></td>
<td>The step size used</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td><strong>OVR_MAND</strong></td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
<td></td>
</tr>
</tbody>
</table>
| **OVR_PENAL** | Selects the kind of penalty function used by a number of the OPTIVAR routines:  
1 = one pass external  
2 = Fiacco-McCormick  
3 = Powell  
4 = Schuldt | 1 |

| **1.8 OPTIVAR routine APPROX** | **OVR_CONV** | 3 = Powell  
4 = Schuldt  
Sets the convergence criterion | 1D-4/1D-5 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OPT_TOL</strong></td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>OPT_CTOL</strong></td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
<td></td>
</tr>
<tr>
<td><strong>OPT_STEP</strong></td>
<td>The step size used</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td><strong>OVR_MAND</strong></td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
<td></td>
</tr>
</tbody>
</table>
| **OVR_PENAL** | Selects the kind of penalty function used by a number of the OPTIVAR routines:  
1 = one pass external  
2 = Fiacco-McCormick  
3 = Powell  
4 = Schuldt | 1 |
| **OVR_STEP** | Sets the fraction of range limiting step lengths | 0.1 |
| **OVR_SIMP** | Sets the maximum number of simplex iterations | 46 |

| **1.9 OPTIVAR routine RANDOM** | **OVR_CONV** | 3 = Powell  
4 = Schuldt  
Sets the convergence criterion | 1D-4/1D-5 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OPT_TOL</strong></td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>OPT_CTOL</strong></td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
<td></td>
</tr>
<tr>
<td><strong>OPT_STEP</strong></td>
<td>The step size used</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td><strong>OVR_MAND</strong></td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
<td></td>
</tr>
</tbody>
</table>
| **OVR_PENAL** | Selects the kind of penalty function used by a number of the OPTIVAR routines:  
1 = one pass external  
2 = Fiacco-McCormick  
3 = Powell  
4 = Schuldt | 1 |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVR_NPTS</td>
<td>Sets the number of points retained per iteration</td>
<td>5</td>
</tr>
<tr>
<td>OVR_SHRK</td>
<td>Sets the shrinkage factor</td>
<td>4</td>
</tr>
<tr>
<td>NAG_BIGBND</td>
<td>Sets the size of non-existent upper bounds.</td>
<td>1.00E+10</td>
</tr>
<tr>
<td>NAG_ETA</td>
<td>Sets the accuracy of the linear minimizations</td>
<td>0.5</td>
</tr>
<tr>
<td>NAG_RHO</td>
<td>Used in the definition of the augmented Lagrangian function</td>
<td>1</td>
</tr>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTOR</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>5.0^N</td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
</tbody>
</table>

### 2.3 NAG routine E04UCF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAG_BIGBND</td>
<td>Sets the size of non-existent upper bounds.</td>
<td>1.00E+10</td>
</tr>
<tr>
<td>NAG_ETA</td>
<td>Sets the accuracy of the linear minimizations</td>
<td>0.5</td>
</tr>
<tr>
<td>NAG_RHO</td>
<td>Used in the definition of the augmented Lagrangian function</td>
<td>1</td>
</tr>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTOR</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>1.00E-05</td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
</tbody>
</table>

### 2.4 bit climbing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC_NBIN</td>
<td>The number of bits used per variable in binary discretisation</td>
<td>12</td>
</tr>
<tr>
<td>BC_PENAL</td>
<td>Set the penalty function control parameter, r, with values less than one</td>
<td>1.00E+20</td>
</tr>
<tr>
<td></td>
<td>invoking the modified Fiacco and McCormick function (OPTIM2) otherwise the one pass method is used (OPTIM1)</td>
<td></td>
</tr>
<tr>
<td>BC_NRANDM</td>
<td>The number of random numbers drawn and discarded before starting the</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>optimiser</td>
<td></td>
</tr>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTOR</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>1.00E-05</td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
</tbody>
</table>

### 2.5 dynamic hill climbing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHC_INITSZ</td>
<td>Sets the non-dimensional size of the initial steps in the hill climbing</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>search</td>
<td></td>
</tr>
<tr>
<td>DHC_THRESH</td>
<td>The hill climbing searches proceed with reducing step sizes until they are</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>less than the value set by this parameter</td>
<td></td>
</tr>
<tr>
<td>DHC_PENAL</td>
<td>Sets the penalty function control parameter, r, with values less than one</td>
<td>1.00E+20</td>
</tr>
<tr>
<td></td>
<td>invoking the modified Fiacco and McCormick function (OPTIM2) otherwise the one pass method is used (OPTIM1)</td>
<td></td>
</tr>
<tr>
<td>DHC_NRANDM</td>
<td>The number of random numbers drawn and discarded before starting the</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>optimiser</td>
<td></td>
</tr>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTOR</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>1.00E-05</td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
</tbody>
</table>

### 2.6 population based incremental learning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL_NBIN</td>
<td>The number of bits used per variable in binary discretisation</td>
<td>12</td>
</tr>
<tr>
<td>PL_NPOP</td>
<td>The number of random guesses</td>
<td>100</td>
</tr>
<tr>
<td>PL_PENAL</td>
<td>Sets the penalty function control parameter, r, with values less than one</td>
<td>1.00E+20</td>
</tr>
</tbody>
</table>

100
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL_LRAT</td>
<td>The learning rate controls how rapidly the probability vector changes towards the successful solutions at the end of each generation</td>
<td>0.05</td>
</tr>
<tr>
<td>PL_PMUTNT</td>
<td>Mutation is applied to the probability vector randomly at the end of each generation with this probability per element</td>
<td>0.02</td>
</tr>
<tr>
<td>PL_NRANDM</td>
<td>The number of random numbers drawn and discarded before starting the optimiser</td>
<td>0</td>
</tr>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTCP</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>1.00E-05</td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
</tbody>
</table>

2.7 numerical recipes routines

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTCP</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>1.00E-05</td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
<tr>
<td>MC_TYPE</td>
<td>Selects the kind of optimizer used by the numerical recipes routines:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = Powell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Polak-Ribiere</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Fletcher-Reeves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Broyden-Fletcher</td>
<td></td>
</tr>
<tr>
<td>MC_PENAL</td>
<td>Selects the kind of penalty function used by the numerical recipes routines:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = one pass external</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Fiacco-McCormick</td>
<td></td>
</tr>
</tbody>
</table>

2.8 design of experiment based routines

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE_NRANDM</td>
<td>DoE sequence random number seed</td>
<td></td>
</tr>
<tr>
<td>MC_TYPE</td>
<td>DoE search methods:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = Random</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Lptau</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Central composite + Lptau</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Full factorial + Lptau</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 = Latin hypercubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 = Cell-based latin hypercubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 = User supplied candidate points</td>
<td></td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
</tbody>
</table>

2.9 design of experiment based routines (without function calls)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE_NRANDM</td>
<td>Six Design of Experiment search methods</td>
<td>0</td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
</tbody>
</table>

3.11 Schwefel library Fibonacci search

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTCP</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
</tbody>
</table>

2.27 numerical recipes routines

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTCP</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used</td>
<td>1.00E-05</td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
<tr>
<td>MC_TYPE</td>
<td>Selects the kind of optimizer used by the numerical recipes routines:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = Powell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Polak-Ribiere</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Fletcher-Reeves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Broyden-Fletcher</td>
<td></td>
</tr>
<tr>
<td>MC_PENAL</td>
<td>Selects the kind of penalty function used by the numerical recipes routines:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = one pass external</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Fiacco-McCormick</td>
<td></td>
</tr>
</tbody>
</table>

2.28 design of experiment based routines

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE_NRANDM</td>
<td>DoE sequence random number seed</td>
<td></td>
</tr>
<tr>
<td>MC_TYPE</td>
<td>DoE search methods:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = Random</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Lptau</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Central composite + Lptau</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Full factorial + Lptau</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 = Latin hypercubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 = Cell-based latin hypercubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 = User supplied candidate points</td>
<td></td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
</tbody>
</table>

2.29 design of experiment based routines (without function calls)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE_NRANDM</td>
<td>Six Design of Experiment search methods</td>
<td>0</td>
</tr>
<tr>
<td>MC_MAND</td>
<td>Turns on mandatory design constraints</td>
<td>0 (off)</td>
</tr>
</tbody>
</table>

3.11 Schwefel library Fibonacci search

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
<td>0</td>
</tr>
<tr>
<td>OPT_CTCP</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>SC_PENAL</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>must be met to be considered satisfied</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The step size used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = one pass external</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Fiacco-McCormick</td>
</tr>
<tr>
<td>3.12</td>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
</tr>
<tr>
<td></td>
<td>OPT_CTOl</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
</tr>
<tr>
<td></td>
<td>OPT_STEP</td>
<td>The step size used</td>
</tr>
<tr>
<td></td>
<td>SC_PENAL</td>
<td>Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = one pass external</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Fiacco-McCormick</td>
</tr>
<tr>
<td>3.13</td>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
</tr>
<tr>
<td></td>
<td>OPT_CTOl</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
</tr>
<tr>
<td></td>
<td>OPT_STEP</td>
<td>The step size used</td>
</tr>
<tr>
<td></td>
<td>SC_PENAL</td>
<td>Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = one pass external</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Fiacco-McCormick</td>
</tr>
<tr>
<td>3.2</td>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
</tr>
<tr>
<td></td>
<td>OPT_CTOl</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
</tr>
<tr>
<td></td>
<td>OPT_STEP</td>
<td>The step size used</td>
</tr>
<tr>
<td></td>
<td>SC_PENAL</td>
<td>Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = one pass external</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Fiacco-McCormick</td>
</tr>
<tr>
<td>3.3</td>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
</tr>
<tr>
<td></td>
<td>OPT_CTOl</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
</tr>
<tr>
<td></td>
<td>OPT_STEP</td>
<td>The step size used</td>
</tr>
<tr>
<td>3.41</td>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
</tr>
<tr>
<td></td>
<td>OPT_CTOl</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
</tr>
<tr>
<td></td>
<td>OPT_STEP</td>
<td>The step size used</td>
</tr>
<tr>
<td></td>
<td>SC_PENAL</td>
<td>Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = one pass external</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Fiacco-McCormick</td>
</tr>
<tr>
<td>Section</td>
<td>Library</td>
<td>Opt Tol</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>3.42 Schwefel library DSCP search</td>
<td>OPT_TOL</td>
<td>The accuracy with which solutions are found</td>
</tr>
<tr>
<td></td>
<td>OPT_C Tol</td>
<td>The accuracy with which constraints must be met to be considered satisfied</td>
</tr>
<tr>
<td></td>
<td>OPT_STEP</td>
<td>The step size used</td>
</tr>
</tbody>
</table>
| | SC_PENAL | Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:  
1 = one pass external  
2 = Fiacco-McCormick | 1 |
| 3.5 Schwefel library Powell search | OPT_TOL | The accuracy with which solutions are found | 0 |
| | OPT_C Tol | The accuracy with which constraints must be met to be considered satisfied | 1.00E-03 |
| | OPT_STEP | The step size used | 1.00E-05 |
| | SC_PENAL | Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:  
1 = one pass external  
2 = Fiacco-McCormick | 1 |
| | SC_TYPE | Selects the default convergence criterion or an alternate criterion:  
1 = default convergence  
2 = alternate convergence | 1 |
| 3.6 Schwefel library DFPS search | OPT_TOL | The accuracy with which solutions are found | 0 |
| | OPT_C Tol | The accuracy with which constraints must be met to be considered satisfied | 1.00E-03 |
| | OPT_STEP | The step size used | 1.00E-05 |
| | SC_PENAL | Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:  
1 = one pass external  
2 = Fiacco-McCormick | 1 |
| | SC_CONV | Defines the expected solution value of the objective function at the optimum, default zero (50% improvement) | 0 |
| 3.7 Schwefel library Simplex search | OPT_TOL | The accuracy with which solutions are found | 1.00E-03 |
| | OPT_C Tol | The accuracy with which constraints must be met to be considered satisfied | 1.00E-03 |
| | OPT_STEP | The step size used | 1.00E-05 |
| | SC_PENAL | Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:  
1 = one pass external  
2 = Fiacco-McCormick | 1 |
<p>| | SC_NITERS | The number of iterations before convergence testing is applied, default zero (the total number of function calls to be used divided by 25 times the number of design variables) | 0 |
| 3.8 Schwefel library Complex search | OPT_TOL | The accuracy with which solutions are found | 0 |</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_CTOL</td>
<td>The accuracy with which constraints must be met to be considered satisfied.</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>OPT_STEP</td>
<td>The step size used.</td>
<td>1.00E-05</td>
</tr>
</tbody>
</table>
| SC_PENAL   | Selects the kind of penalty function used by unconstrained search methods in the Schwefel library routines:  
                      1 = one pass external  
                      2 = Fiacco-McCormick |
|            |                                                                             | 1     |
| SC_LS      | How severe convergence testing is, with bigger values requiring the objective function to remain essentially stationary for longer before convergence is considered complete. | 2     |
| SC_NRANDM  | The number of random numbers drawn and discarded before starting the optimiser. | 0     |
| OPT_TOL    | The accuracy with which solutions are found.                                 | 1.00E-03 |
| OPT_CTOL   | The accuracy with which constraints must be met to be considered satisfied.  | 1.00E-03 |
| OPT_STEP   | The step size used.                                                           | 1.00E-05 |
| SC_LR      | Controls step size management, with bigger values giving a slower but more accurate search. | 1     |
| SC_SN      | Controls step size adjustment, which can be kept constant using a value of unity. | 0.85  |
| SC_TYPE    | Controls whether the "comma" or "plus" version of the code is used:  
                      1 = comma  
                      2 = plus |
|            |                                                                             | 1     |
| SC_IELTER  | The number of parents in a generation.                                       | 10    |
| SC_NACHKO  | The number of descendants of a generation.                                   | 100   |
| SC_NS      | The number of different step size parameters.                                | N     |
| SC_DELS    | The global random step sizes.                                                | 1/sqrt(2N) |
| SC_DELI    | The local random step sizes.                                                 | 1/sqrt(2N)/sqrt(NS) |
| SC_DELP    | The correlation ellipsoid angles.                                            | 5 × 0.01745 = 5° |
| SC_BKORRL  | Switches on the rotation of the correlation ellipsoid if non-zero.           | 1     |
| SC_KONVKR  | Number of generations used when applying convergence tests.                 | 1     |
| SC_NRANDM  | The number of random numbers drawn and discarded before starting the optimiser. | 0     |
| OPT_TOL    | The accuracy with which solutions are found.                                 | 0     |
| OPT_CTOL   | The accuracy with which constraints must be met to be considered satisfied.  | 1.00E-03 |
| OPT_STEP   | The step size used.                                                           | 1.00E-05 |
| SC_TYPE    | Controls whether the "comma" or "plus" version of the code is used:  
                      1 = comma  
                      2 = plus |
<p>|            |                                                                             | 1     |
| SC_IREKOM  | Controls the recombination type (n.b., each digit in this variable must lie between 1 and 5). | 333   |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA_NBIN</td>
<td>The number of bits used per variable in binary discretisation</td>
<td>12</td>
</tr>
<tr>
<td>GA_NPOP</td>
<td>Population size each generation</td>
<td>50</td>
</tr>
<tr>
<td>GA_PENAL</td>
<td>Set the penalty function control parameter, ( r ), with values less than one</td>
<td>1.00E+20</td>
</tr>
<tr>
<td></td>
<td>invoking the modified Fiacco and McCormick function (OPTIM2) otherwise the one pass method is used (OPTIM1)</td>
<td></td>
</tr>
<tr>
<td>GA_PBEST</td>
<td>The proportion of the solutions that are used to form the parents of the next generation</td>
<td>0.8</td>
</tr>
<tr>
<td>GA_PCROSS</td>
<td>The proportion of the solutions in the population that are crossed to form new solutions</td>
<td>0.8</td>
</tr>
<tr>
<td>GA_PINVRT</td>
<td>The proportion of the solutions in the population that have their ordering codes inverted to form new solutions</td>
<td>0.2</td>
</tr>
<tr>
<td>GA_PMUTNT</td>
<td>Mutation is allowed at a level set by this parameter, i.e., this fraction of the total number of binary digits are reversed at each pass (n.b. greater than 0.5 results in randomisation)</td>
<td>0.005</td>
</tr>
<tr>
<td>GA_PRPTNL</td>
<td>If .TRUE. the make-up of the following generation is then biased in favour of the most successful according to their objective function values, otherwise survival is proportional to ranking but scaled to prevent dominance and stagnation</td>
<td>1 (.TRUE.)</td>
</tr>
<tr>
<td>GA_ALPHA</td>
<td>The cluster penalising function. Small values giving less severe penalties than those nearer one, and a value less than zero turning the mechanism off</td>
<td>0.2</td>
</tr>
<tr>
<td>GA_DMIN</td>
<td>The minimum distance between cluster centroids</td>
<td>0.05</td>
</tr>
<tr>
<td>GA_DMAX</td>
<td>The furthest distance a new solution can be from an existing cluster centroid without a new cluster being formed</td>
<td>0.2</td>
</tr>
<tr>
<td>GA_NCLUST</td>
<td>The initial number of clusters, either in absolute terms or, if it is &lt;1.0, as a fraction of the population size</td>
<td>0.1</td>
</tr>
<tr>
<td>GA_NBREED</td>
<td>Breeding is restricted to be between members of the same cluster if there are at least this many members in the cluster</td>
<td>0.1</td>
</tr>
<tr>
<td>GA_PSEED</td>
<td>Seeding of the initial, randomly generated members of the population is allowed at a level set by this parameter (0 = random, 1.0 clones of initial point)</td>
<td>0</td>
</tr>
<tr>
<td>GA_NRANDM</td>
<td>The number of random numbers drawn and discarded before starting the optimiser</td>
<td>0</td>
</tr>
<tr>
<td>SA_NBIN</td>
<td>The number of bits used per variable in binary discretisation</td>
<td>12</td>
</tr>
<tr>
<td>SA_PTEMP</td>
<td>The power to which the number of iterations must be raised to calculate the number of annealing temperatures</td>
<td>1/3</td>
</tr>
<tr>
<td>SA_PWIDE</td>
<td>The range of temperatures in the annealing schedule, with large values</td>
<td>5</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>SA_PCOLD</strong></td>
<td>The bottom temperature in the annealing schedule, with values over two giving lower temperatures and thus more accurate results at the expense of perhaps missing the global optimum.</td>
<td>2</td>
</tr>
<tr>
<td><strong>SA_SCHED</strong></td>
<td>If this parameter exists and contains an array of variables it is taken to be a cooling schedule which is to be used in place of the preceding three parameters.</td>
<td></td>
</tr>
<tr>
<td><strong>SA_PENAL</strong></td>
<td>Sets the penalty function control parameter, ( r ), with values less than one invoking the modified Fiacco and McCormick function (OPTIM2) otherwise the one pass method is used (OPTIM1).</td>
<td>1.00E+20</td>
</tr>
<tr>
<td><strong>SA_PMUTNT</strong></td>
<td>Mutation is allowed at a level set by this parameter, i.e., this fraction of the total number of binary digits are reversed at each evaluation (setting ( \text{SA_PMUTNT} ) negative causes the mutations to be made to the actual variables rather than the binary digits).</td>
<td>0.1</td>
</tr>
<tr>
<td><strong>SA_NRANCM</strong></td>
<td>The number of random numbers drawn and discarded before starting the optimiser.</td>
<td>0</td>
</tr>
<tr>
<td><strong>EP_NBIN</strong></td>
<td>The number of bits used per variable in binary discretisation.</td>
<td>12</td>
</tr>
<tr>
<td><strong>EP_NPOP</strong></td>
<td>Population size each generation.</td>
<td>50</td>
</tr>
<tr>
<td><strong>EP_PENAL</strong></td>
<td>Set the penalty function control parameter, ( r ), with values less than one invoking the modified Fiacco and McCormick function (OPTIM2) otherwise the one pass method is used (OPTIM1).</td>
<td>1.00E+20</td>
</tr>
<tr>
<td><strong>EP_IMUTNT</strong></td>
<td>Mutation is controlled so that the best members are mutated least and the worst, most, this parameter governs the order of the mutation with ranking, a value of one thus gives a linear change, two a quadratic one and so on (only positive values being allowed), default two;</td>
<td>2</td>
</tr>
<tr>
<td><strong>EP_TOURN</strong></td>
<td>The number of members in the ranking tournament, either in absolute terms or, if it is (&lt;1.0), as a fraction of the population size.</td>
<td>0.5</td>
</tr>
<tr>
<td><strong>EP_NRANCM</strong></td>
<td>The number of random numbers drawn and discarded before starting the optimiser.</td>
<td>0</td>
</tr>
<tr>
<td><strong>ES_NPOP</strong></td>
<td>The population size.</td>
<td>100</td>
</tr>
<tr>
<td><strong>ES_NCPOP</strong></td>
<td>The parent populations size, a fraction of the total population size.</td>
<td>1</td>
</tr>
<tr>
<td><strong>ES_PENAL</strong></td>
<td>Sets the penalty function control parameter, ( r ), with values less than one invoking the modified Fiacco and McCormick function (OPTIM2).</td>
<td>1.00E+20</td>
</tr>
</tbody>
</table>
ES_DELSIG  Otherwise the one pass method is used (OPTIM1)

ES_UCHILD  Used to set the standard deviation of a random number whose exponential is then used to scale the previous mutation control parameter.

ES_VDSCRT  When selecting the next generation all the children may be used or a mixture of the best children and parents used; if this parameter is non-zero it is taken to be .TRUE. and the children are used in preference to parents.

ES_MDSCRT  Controls the crossover type between parents for design variables. Either discrete crossover (.TRUE.) or intermediate crossover (.FALSE.).

ES_NRANDM  The number of random numbers drawn and discarded before starting the optimiser

Table 1 OptionsMatlab optional control parameters

5.17 How do I deal with failed calculations when constructing a response surface model?

Failures may occur when calculating the value of an objective function during a direct search. These failures may be stochastic (perhaps due to the unexpected failure of a Grid resource), or they may be indicative of a problematic area of the parameter space (perhaps representing an unfeasible geometry). There are a couple of possible strategies to ensure that failed calculations are correctly handled by OptionsMatlab when constructing and searching a Response Surface Model.

The optional control parameter OBJ_BAD_PT may be used to define an outer bound for acceptable values of an objective function. When OptionsMatlab encounters objective function values exceeding OBJ_BAD_PT during the construction of a Response Surface Model these values will be ignored. During minimisation OptionsMatlab will ignore any objective function values greater than OBJ_BAD_PT, whereas during maximisation values less than OBJ_BAD_PT will be ignored.

It is possible to use OBJ_BAD_PT to filter stochastic failures that occur during the evaluation of the objective function. For a minimisation problem the Matlab function defining the user's objective function should return a very large value for the objective
function (which exceeds expected values) upon failure. When building and searching a Response Surface Model of the objective function the `OptionsMatlab` input structure should contain the field `OBJ_BAD_PT` with a value less than that of the failed calculations. The bad points will therefore not influence the Response Surface Model of the objective function.

When a failed calculation represents a problematic area of the parameter space it is sometimes desirable to steer a design search away from these areas. To do this it is possible to define an extra constraint to indicate bad points. In this case when a calculation fails this constraint should be set to indicate an invalid point. As the design search proceeds the constraint may steer the optimiser away from these problematic areas. When searching over a Response Surface Model this strategy may be used in conjunction with `OBJ_BAD_PT`.

### 5.18 How do I build and evaluate a RSM faster?

There are a number of ways to make `OptionsMatlab` run faster when building and evaluating a Response Surface Model.

If additional output information is requested from `OptionsMatlab` (`OLEVEL>0`) further calculations may be performed. This may significantly increase the time taken to build and evaluate a RSM, in particular for large datasets. Therefore to perform faster searches of a RSM it may be advantageous to set `OLEVEL=0` in the `OptionsMatlab` input structure.

When performing multiple searches of a Stochastic Process Model (SPM), i.e. when `OBJMOD` or `CONMOD` equal to 4.1, 4.2 or 4.3, it is possible to avoid rebuilding the SPM by passing the hyper-parameters for the model in the input structure. When a SPM is first built and searched (or when the hyper-parameters are explicitly tuned, see section 5.11) the hyper-parameters are returned in the output structure fields `OBJHYPER` (and/or `CONHYPER`). By adding these fields to the `OptionsMatlab` input structure when subsequently searching the SPM the hyper-parameters will not be rebuilt. However, please note that it is important to rebuild the hyper-parameters following changes to dataset otherwise they may become ill-defined for your dataset.
6 OptionsMatlab Examples

6.1 DoE Direct search

Perform a DoE over the problem defined by the input structure, and then plot the results of the DoE. The results of this DoE are used to build RSM in many of the subsequent examples.

```matlab
input1 = createBeamStruct;
input1.OMETHD = 2.8; %Design of Experiments
input1.NITERS = 50; %Number of iterations
input1.OLEVEL = 2;
input1.MC_TYPE = 4; %Full factorial DoE
output1 = OptionsMatlab(input1)
```

```
output1 =

 VARS: [2x1 double]
 OBJFUN: 3.6877e+003
 CONS: [5x1 double]
 OBJTRC: [1x1 struct]
 CONSTRC: [1x1 struct]
```

%Print a digest of the optimisation and determine if optimum returned is valid
isvalid = optimisationDigest(output1, input1)
Optimisation of the problem defined by "beamobjfun" and "beamobjcon"

Optimisation method: 2.8

Status after 50 evaluations is :-

Trial vector

<table>
<thead>
<tr>
<th>Lwr Bound</th>
<th>Vector</th>
<th>Uppr Bound</th>
<th>Variable (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00000000</td>
<td>&lt; 24.68750000</td>
<td>&gt; 50.00000000</td>
<td>BREADTH</td>
</tr>
<tr>
<td>2.00000000</td>
<td>&lt; 14.93750000</td>
<td>&gt; 25.00000000</td>
<td>HEIGHT</td>
</tr>
</tbody>
</table>

No of V. Boundary Violations = 0

Objective Function (min.) = 3687.6953 AREA

Constraints vector

<table>
<thead>
<tr>
<th>Lwr Bound</th>
<th>Vector</th>
<th>Uppr Bound</th>
<th>Variable (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 81.69200669</td>
<td>&gt; 200.00000000</td>
<td>TAU</td>
<td></td>
</tr>
<tr>
<td>&lt; 2.03379058</td>
<td>&gt; 100.00000000</td>
<td>DEFLN</td>
<td></td>
</tr>
<tr>
<td>&lt; 3.78699170</td>
<td>&gt; 5.00000000</td>
<td>H-ON-B</td>
<td></td>
</tr>
<tr>
<td>&lt; 6.05063291</td>
<td>&gt; 10.00000000</td>
<td>F-CRIT</td>
<td></td>
</tr>
<tr>
<td>5000.00000000</td>
<td>&lt; 290554.98816615</td>
<td>F-CRIT</td>
<td></td>
</tr>
</tbody>
</table>

No of Constraint Violations = 0

%Plot the results of the optimisation
plotOptionsSurfaces(output1, input1)
optimisationTerrain(output1, input1)
optimisationTrace(output1, input1)
6.2 RSM returning update points

Build and search a Response Surface Model using the results of example 6.1. This search will return up to 10 update points where the quality of the DoE would be best improved.

```matlab
input2 = createBeamStruct;
input2.OMETHD = 4; % Genetic Algorithm
input2.NITERS = 50;
input2.OLEVEL = 2;
input2.OBJMOD = 3.3; % First order polynomial regression
 % model plus squares
input2.CONMOD = 3.3; % First order polynomial regression
 % model plus squares
input2.NUMUPDATE = 10; % 10 update points
output2 = OptionsMatlab(input2, output1)
```

```
output2 =

 VARS: [2x1 double]
 OBJFUN: 2.5149e+003
 CONS: [5x1 double]
 DOE_TRACE: [1x1 struct]
```

6.3 DoE evaluating candidate points

Perform a candidate point DoE search to evaluate the update points suggested by example 6.2.

```matlab
input3 = createBeamStruct;
input3.OLEVEL = 2;
```
input3.OMETHD = 2.8; %Design of Experiments
%Specify update points as candidate points
input3.DOE_TRACE = output2.DOE_TRACE;
%Set the number of iterations
input3.NITERS = output2.DOE_TRACE.NCALLS+1;
input3.MC_TYPE = 7; %Specify that the DOE uses candidate points
%Note that the meaning of MC_TYPE has changed since version 0.6.5

output3 = OptionsMatlab(input3)

output3 =

    VARS: [2x1 double]
    OBJFUN: 6000
    CONS: [5x1 double]
    OBJTRC: [1x1 struct]
    CONSTRC: [1x1 struct]

%Concatenate the output structures from examples 6.1 and 6.3
output3_cat = optimisationAppendDataPoints(output1,output3)

output3_cat =

    VARS: [2x1 double]
    OBJFUN: 3.6877e+003
    CONS: [5x1 double]
    OBJTRC: [1x1 struct]
    CONSTRC: [1x1 struct]

6.4 RSM using candidate points
Build and evaluate an RSM at specified points. The utility function
optimisationSampleRSM can assist you to do this (see example 6.9).

    input4 = createBeamStruct;
input4.OLEVEL = 2; %Design of Experiments
input4.OMETHD = 2.8; %Specify the candidate points to be evaluated
input4.DOE_TRACE.NCALLS = output1.OBJTRC.NCALLS;
input4.DOE_TRACE.VARS = output1.OBJTRC.VARS;
input4.NITERS = input4.DOE_TRACE.NCALLS +1;
input4.MC_TYPE = 7; %DoE using candidate points
input4.OBJMOD = 3.3; %First order polynomial
input4.CONMOD = 3.3; %First order polynomial
output4 = OptionsMatlab(input4, output3_cat)

output4 =

    VARS: [2x1 double]
    OBJFUN: 2.6319e+003
    CONS: [5x1 double]
    RSMTRC: [1x1 struct]

%Plot the RSM
fig = optimisationTerrain(output4, input4, 2);
optimisationTrace(output4, input4, 2, fig);

6.5 Direct search with checkpointing
Checkpoint the search history of a direct search every 300 generations in a file 'optimTest5.mat'.

input5 = createBeamStruct;
input5.OLEVEL = 2;
input5.OMETHD = 2.8;
input5.NITERS = 500; %500 iterations
input5.MAXJOBS = 100; %Submit jobs in groups of 100
input5.CHKPT_INTV = 300;%Checkpoint every 300 generations
input5.CHKPT_FILE = 'optimTest5.mat'; %Checkpoint file name
delete('optimTest5.mat')%Remove existing checkpoint file
6.6 Parallel job submission with userdata

This example uses the Geodise compute toolbox [3] that provides client functionality to Globus Grid resources that may be used to evaluate computational jobs. The jobs will be submitted to the Globus resource to run concurrently. When the jobs are complete the results will be retrieved and parsed to determine the objective function values. Note that you must have the Geodise compute toolbox installed, and have valid credentials with permissions to submit jobs to the specified compute resource.

```matlab
% Define the Globus server to which to submit the jobs
GLOBUSSERVER = 'escience-dept2.sesnet.soton.ac.uk';

gd_createproxy

input6 = createBeamStructParallel;
input6.OLEVEL = 0;
```
input6.MAXJOBS = 10;  %The number of the jobs to be run
                   %concurrently
input6.NITERS = 20;  %The number of iterations

                   %USERDATA field is used to pass the
                   %host name upon which to run the
                   %objective function to the Matlab
                   %function

input6.USERDATA.hostname = GLOBUSSERVER;
output6 = OptionsMatlab(input6)

 [...]  

chandle =  

https://escience-
dept2.sesnet.soton.ac.uk:30040/10303/1134728028/  

uniquedir =  

20051216T101347_57891/  

EVAL =  

3.9666e+003

output6 =  

    VARS: [2x1 double]
    OBJFUN: 3.9666e+003
    CONS: [5x1 double]
    OBJTRC: [1x1 struct]
    CONSTRC: [1x1 struct]
6.7 Hyper-parameter tuning

This example will tune hyper-parameters for a Stochastic Process Model over the results of the DoE produced in example 6.1. The hyper-parameters will be tuned using the optimisation algorithm specified by OMETHD. The tuned hyper-parameters will be returned in fields of the output structure OBJHYPER (or CONHYPER) that be supplied in the input structure when building a Stochastic Process Model RSM.

```matlab
input7 = createBeamStruct;
input7.OLEVEL = 0;
input7.OBJMOD = 4.1; %Tune stochastic Process Model
%hyper-parameters over the
%objective function
input7.CONMOD = 4.1; %Tune stochastic Process Model
%hyper-parameters over the
%constraints
input7.TUNEHYPER = 1; %Tune the hyper-parameters (do not
%search the user's problem)
input7.OMETHD = 5; %Simulated Annealing
%Note that if OBJHYPER or CONHYPER are
%provided these hyper-parameters will
%be used in preference to those
%generated by OPTRSS
output7 = OptionsMatlab(input7, output1)
```

output7 =

```
OBJHYPER: [1x1 struct]
OBJ_CLF: 712.6938
CONHYPER: [1x1 struct]
CST_CLF: 824.2750
```

6.8 User-defined sequential optimiser

This example invokes the sequential optimiser defined by the Matlab function 'optuml.m', which randomly generates searches points within the parameters space. It is possible to write a Matlab function that provides alternative behaviour for a sequential optimiser.
input8 = createBeamStruct;
input8.OLEVEL = 2;
input8.OMETHD = 2.1;  %User-defined optimiser 1
input8.OPTUM1 = 'optum1';  %Specifies function 'optum1.m' as
                           %user-defined optimiser

output8 = OptionsMatlab(input8)

output8 =

    VARS: [2x1 double]
    OBJFUN: 2.6409e+003
    CONS: [5x1 double]
    OBJTRC: [1x1 struct]
    CONSTRC: [1x1 struct]

6.9 Sample a Response Surface Model

This example uses the utility function optimisationSampleRSM to build an RSM and sample the RSM at 100 evenly spaced points within the parameter space. Compare this method to example 6.4.

%Create an input structure to search an RSM
input9 = createBeamStruct;
input9.OLEVEL = 2;
input9.OBJMOD = 3.3;
input9.CONMOD = 3.3;

%Sample 100 evenly spaced points
output9 = optimisationSampleRSM(input9, output1, 100)

%Plot the points sampled from the RSM
optimisationTerrain(output9, input9)
6.10 Build a stochastic process model RSM with quick tuning

This example builds a stochastic process model RSM using quick hyper-parameter tuning (by setting the flag `RSM_QCK_HP`). Here the hyper-parameters `THETA` and `EXP` will be tuned across all design variables, rather than `NVARS` values of `THETA` and `EXP` corresponding to each design variable. The values of `OBJ_EXP` and `OBJ_THETA`, and of `CST_EXP` and `CST_THETA` (in the structures `OBJHYPER` and `CONHYPER`) will be scalar, rather than a vector of length `NVARS`.

```matlab
% Create an input structure to search an SPM RSM with quick tuning
input10 = createBeamStruct;
input10.OLEVEL = 0;
input10.OBJMOD = 4.1;
input10.CONMOD = 4.1;
input10.RSM_QCK_HP = 1;

output10 = OptionsMatlab(input10, output1);
output10.OBJHYPER
output10.CONHYPER
```
6.11 Search a tuned stochastic process model RSM

This example samples and then searches the stochastic process model RSM built using the quick tuned hyper-parameters. The scalar hyper-parameter values OBJ_THETA and OBJ_EXP are duplicated across the design variables of the problem and assigned to the field OBJHYPER of the input structure.

```matlab
% Duplicate the scalar hyperparameter values across the design variables
inputStruct = createBeamStruct;
inputStruct.OBJHYPER.OBJ_THETA = output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_EXP = output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER.OBJ_LAMBDA;
```
%Sample the RSM surface
input11a = inputStruct;
input11a.OLEVEL = 0;
input11a.OBJMOD = 4.1; %Evaluate SPM RSM objective function
input11a.CONMOD = 0.0; %Evaluate constraint function directly
output11a = optimisationSampleRSM(input11a, output1, 400);

%Create an input structure to search the SPM RSM using a GA
input11b = input11a; %Copy the sampling input structure
input11b.OMETHD = 4; %Genetic Algorithm
input11b.NITERS = 500 %10 generations
output11b = OptionsMatlab(input11b, output1);
output11b = optimisationSearchTrace(output11b) %Retrieve optimum from the trace history

output11b =

    VARS: [2x1 double]
    OBJFUN: 2.6948e+003
    CONS: [5x1 double]
    RSMTRC: [1x1 struct]
    OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point
optimisationTerrain(output11a, input11a, 5)
hold on;
plot3(output11b.VARS(1,1), output11b.VARS(2,1), output11b.OBJFUN, 'ko', 'MarkerFaceColor', 'k')

6.12 Search the root mean square error of a tuned stochastic process model RSM

This example samples and then searches the Root Mean Square Error of the stochastic process model RSM built using the quick tuned hyper-parameters. The scalar hyper-parameter values OBJ_THETA and OBJ_EXP are duplicated across the design variables of the problem and assigned to the field OBJHYPER of the input structure.

The RMSE surface is invariant to a change in the direction of search for the
The reader will be aware that the root mean square error of the SPM falls to zero at all sampled points (since the values of the objective and constraints are known at these points) so searching for the minimum of the surface is of little value. To find the maximum error in the stochastic process model RSM the direction of search in the input field `DIRCTN` is always set to +1 regardless of the direction of search of the underlying problem. This is worth highlighting because this differs from the searches of the other stochastic process model properties. In the cases of expected improvement (`OBJMOD=4.3`), constrained expected improvement (`OBJMOD=4.31`), constrained feasibility of improvement (`OBJMOD=4.32`) and probability of improvement (`OBJMOD=4.33`) the RSM surface that is built is critically dependent on the direction of search of the underlying problem. Any searches of these surfaces are hard-coded within OPTIONS to build the surface according to the direction of search for the underlying problem and seek the maximum in that surface accordingly. Only in the case of RMSE must the direction of search be explicitly set to +1 to find the maximum in the root mean square error of the RSM.

```matlab
% Duplicate the scalar hyperparameter values across the design variables
inputStruct = createBeamStruct;
inputStruct.OBJHYPER.OBJ_THETA = output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_EXP = output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER.OBJ_LAMBDA;

% Sample the RSM surface
input12a = inputStruct;
input12a.OLEVEL = 0;
input12a.OBJMOD = 4.2; % Evaluate RMSE of SPM RSM over objective function
input12a.CONMOD = 0.0; % Evaluate constraint function directly
input12a.ONAM = 'RMSE'; % Label objective
input12a.DIRCTN = +1; % The error surface should not change with DIRCTN
```
output12a = optimisationSampleRSM(input12a, output1, 400);
    %Sample RSM

input12b = input12a;   %Copy the sampling input structure
input12b.DIRCTN = -1;  %The error surface should not change with DIRCTN
output12b = optimisationSampleRSM(input12b, output1, 400);

%Check that the RMSE surface is invariant under change of DIRCTN
if (sum(abs(output12a.RSMTRC.OBJFUN - output12b.RSMTRC.OBJFUN)) > 0)
    error('*** RMSE of Stochastic Process Model is not invariant under change of DIRCTN ***')
end

input12c = input12b;   %Copy the sampling input structure
input12c.DIRCTN = +1;  %Search for maximum in RMSE of the SPM
                        %(NB. This value is set to +1 regardless of the % direction of the underlying problem)
input12c.OMETHD = 4;   %Genetic Algorithm
input12c.NITERS = 500  %10 generations
output12c = OptionsMatlab(input12c, output1);
output12c = optimisationSearchTrace(output12c)  % Search the trace history for optimum

output12c =
          
          VARS: [2x1 double]
OBJFUN: 746.8510
CONS: [5x1 double]
RSMTRC: [1x1 struct]
OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point
optimisationTerrain(output12a, input12a, 5)
hold on;
6.13 Search the expected improvement of a tuned stochastic process model RSM

This example samples and then searches the Expected Improvement of the stochastic process model RSM built using the quick tuned hyper-parameters. The scalar hyper-parameter values OBJ_THETA and OBJ_EXP are duplicated across the design variables of the problem and assigned to the field OBJHYPER of the input structure. Note that for a minimisation problem OPTIONS inverts the Expected Improvement calculation, returning a minimum value of the inverted problem, at the point of maximum expected improvement of the RSM.

```matlab
% Duplicate the scalar hyperparameter values across the design variables
inputStruct = createBeamStruct;
inputStruct.OBJHYPER.OBJ_THETA = output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_EXP = output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER.OBJ_LAMBDA;

% Sample the RSM surface
input13a = inputStruct;
input13a.OLEVEL = 0;
input13a.OBJMOD = 4.3; % Evaluate EI of SPM RSM over objective function
input13a.CONMOD = 0.0; % Evaluate constraint function directly
input13a.ONAM = 'EI'; % Label objective
output13a = optimisationSampleRSM(input13a, output1, 400);
 % Sample RSM

% Create an input structure to search the SPM RSM using a GA
input13b = input13a; % Copy the sampling input structure
input13b.OMETHD = 4; % Genetic Algorithm
input13b.NITERS = 500 % 10 generations
output13b = OptionsMatlab(input13b, output1);
```
output13b = optimisationSearchTrace(output13b) %Search the trace history for optimum

output13b =

  VARS: [2x1 double]
  OBJFUN: 115.1293
  CONS: [5x1 double]
  RSMTRC: [1x1 struct]
  OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point
optimisationTerrain(output13a, input13a, 5)
hold on;
plot3(output13b.VARS(1,1), output13b.VARS(2,1), ...
     output13b.OBJFUN, 'ko', 'MarkerFaceColor', 'k')

6.14 Search the probability of improvement of a tuned stochastic process model RSM

This example samples and then searches the Probability of Improvement of the stochastic process model RSM built using the quick tuned hyper-parameters. The scalar hyper-parameter values OBJ_THETA and OBJ_EXP are duplicated across the design variables of the problem and assigned to the field OBJHYPER of the input structure. Note that for a minimisation problem OPTIONS inverts the Probability of Improvement calculation, returning a minimum value of the inverted problem, at the point of maximum probability of improvement of the RSM (this is why this calculation may return negative value for the probability when searching a minimisation problem).

% Duplicate the scalar hyperparameter values across the design variables
inputStruct = createBeamStruct;
inputStruct.OBJHYPER.OBJ_THETA = output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_EXP   = output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER.OBJ_LAMBDA;
%Sample the RSM surface
input14a = inputStruct;
input14a.OLEVEL = 0;
input14a.OBJMOD = 4.33; %Evaluate PI of SPM RSM over objective function
input14a.CONMOD = 0.0; %Evaluate constraint function directly
input14a.ONAM = 'PI'; %Label objective
output14a = optimisationSampleRSM(input14a, output1, 400);
%Sample RSM

%Create an input structure to search the SPM RSM using a GA
input14b = input14a; %Copy the sampling input structure
input14b.OMETHD = 4; %Genetic Algorithm
input14b.NITERS = 500 %10 generations
output14b = OptionsMatlab(input14b, output1);
output14b = optimisationSearchTrace(output14b) %Search the trace history for optimum

output14b =

VARS: [2x1 double]
OBJFUN: -1.0776e-042
CONS: [5x1 double]
RSMTRC: [1x1 struct]
OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point
optimisationTerrain(output14a, input14a, 5)
hold on;
plot3(output14b.VARS(1,1), output14b.VARS(2,1), output14b.OBJFUN, 'ko', 'MarkerFaceColor', 'k')

6.15 Search the constrained expected improvement of a tuned stochastic process model RSM
This example samples and then searches the constrained Expected Improvement of the stochastic process model RSM built using the quick tuned hyper-parameters. The
scalar hyper-parameter values \texttt{OBJ\_THETA}, \texttt{OBJ\_EXP}, \texttt{CST\_THETA} and \texttt{CST\_EXP} are duplicated across the design variables of the problem and assigned to the fields \texttt{OBJHYPER} and \texttt{CONHYPER} of the input structure. Note that for a minimisation problem \texttt{OPTIONS} inverts the constrained Expected Improvement calculation, returning a minimum value of the inverted problem, at the point of maximum expected improvement of the constrained RSM.

% Duplicate the scalar hyperparameter values across the design variables
inputStruct = createBeamStruct;
inputStruct.OBJHYPER.OBJ\_THETA = output10.OBJHYPER.OBJ\_THETA*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ\_EXP = output10.OBJHYPER.OBJ\_EXP*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ\_LAMBDA = output10.OBJHYPER.OBJ\_LAMBDA;
inputStruct.CONHYPER.CST\_THETA = output10.CONHYPER.CST\_THETA*ones(inputStruct.NVRS,1);
inputStruct.CONHYPER.CST\_EXP = output10.CONHYPER.CST\_EXP*ones(inputStruct.NVRS,1);
inputStruct.CONHYPER.CST\_LAMBDA = output10.CONHYPER.CST\_LAMBDA;

% Sample the RSM surface
input15a = inputStruct;
input15a.OLEVEL = 0;
input15a.OBJMOD = 4.31; % Evaluate constrained EI of SPM RSM over objective function
input15a.CONMOD = 4.1; % Evaluate constraint function using SPM RSM
input15a.ONAM = 'CST-EI'; % Label objective
output15a = optimisationSampleRSM(input15a, output1, 400);

% Create an input structure to search the SPM RSM using a GA
input15b = input15a; % Copy the sampling input structure
input15b.OMETHD = 4; % Genetic Algorithm
input15b.NITERS = 500 % 10 generations
output15b = OptionsMatlab(input15b, output1);
output15b = optimisationSearchTrace(output15b) % Search the
% Plot the RSM and optimum point
optimisationTerrain(output15a, input15a, 5)
hold on;
plot3(output15b.VARS(1,1), output15b.VARS(2,1), ...
output15b.OBJFUN, 'ko', 'MarkerFaceColor', 'k')

6.16 Search the constrained feasibility of improvement of a tuned stochastic process model RSM
This example samples and then searches the constrained Feasibility of Improvement of the stochastic process model RSM built using the quick tuned hyper-parameters. The scalar hyper-parameter values OBJ_THETA, OBJ_EXP, CST_THETA and CST_EXP are duplicated across the design variables of the problem and assigned to the fields OBJHYPER and CONHYPER of the input structure. Note that for a minimisation problem OPTIONS inverts the constrained Feasibility of Improvement calculation, returning a minimum value of the inverted problem, at the point of maximum feasibility of improvement of the constrained RSM.

% Duplicate the scalar hyperparameter values across the design variables
inputStruct = createBeamStruct;
inputStruct.OBJHYPER.OBJ_THETA = output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_EXP = output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);
inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER.OBJ_LAMBDA;
inputStruct.CONHYPER.CST_THETA =
output10.CONHYPER.CST_THETA*ones(inputStruct.NVRS,1);
inputStruct.CONHYPER.CST_EXP =
output10.CONHYPER.CST_EXP*ones(inputStruct.NVRS,1);
inputStruct.CONHYPER.CST_LAMBDA = output10.CONHYPER.CST_LAMBDA;

%Sample the RSM surface
input16a = inputStruct;
input16a.OLEVEL = 0;
input16a.OBJMOD = 4.32;       %Evaluate constrained FI of SPM
RSM over objective function
input16a.CONMOD = 4.1;        %Evaluate constraint function
using SPM RSM
input16a.ONAM = 'CST-FI';     %Label objective
output16a = optimisationSampleRSM(input16a, output1, 400);
    %Sample RSM

%Create an input structure to search the SPM RSM using a GA
input16b = input16a;         %Copy the sampling input structure
input16b.OMETHD = 4;         %Genetic Algorithm
input16b.NITERS = 500        %10 generations
output16b = OptionsMatlab(input16b, output1);
output16b = optimisationSearchTrace(output16b) %Search the
trace history for optimum

output16b =

    VARS: [2x1 double]
    OBJFUN: 0
    CONS: [5x1 double]
    RSMTRC: [1x1 struct]
    OBJHYPER: [1x1 struct]
    CONHYPER: [1x1 struct]

%Plot the RSM and optimum point
optimisationTerrain(output16a, input16a, 5)
hold on;
plot3(output16b.VARS(1,1), output16b.VARS(2,1), ...
       output16b.OBJFUN, 'ko', 'MarkerFaceColor', 'k')
7 References

[4] Matlab Optimization Toolbox:
    http://www.mathworks.com/products/optimization/