Approach to building ontologies

A high-level view

Chris Wroe

Introduction

- Describe key steps in our approach
- Illustrate with a case study
- Not a discussion of project management
- Help inform integration of DL ontology building into wider knowledge base projects

Key steps

- Requirements gathering
- Content scoping
- Reusing existing components
- Construction
- Internal testing
- Delivery
- Evaluation

Requirements gathering

- What can a DL based ontology offer and should I use one?
 - Most people hold misconceptions
- Key functions
 - Organising/ maintaining a large vocabulary within a knowledge base
 - Integrating vocabularies from several knowledge bases

Case study – a Drug Ontology

- Research group builds a knowledge base of prescribing guidelines for specific conditions
 - KB excludes prescribing 'common sense' information.
 - E.g. 'Don't suggest a drug if it will interact with patient's medication or other conditions'.
- Need additional knowledge bases to hold
 - General drug interactions
 - General contraindications

Drug Ontology case study - requirements

- Require a single vocabulary to integrate the information in each KB in a logically consistent way to support inference
- Problems which DL ontologies can address
 - Vocabulary will be large (1000's of terms)
 - Hard to maintain consistently by hand.
 - Concepts cover a wide range of granularity
 - Need to be organised in a classification
 - Concepts are complex
 - Multiple ways of classifying the same concept

Content scoping

- Description Logic Ontology building is descriptive!
 - Focus taken away from enumeration and manual classification
- Determine expected coverage and complexity of concept descriptions required.

Drug Ontology case study - scoping

- Sample concepts from each knowledge base.
 - guideline KB-
 - if on anti-anginal ...
 - Anti-aginal definition will need to include clinical condition concepts in definition (angina).
 - Angina definitions will need to include anatomy and physiology concepts in definition (heart, blood flow)

Reusing existing components

- Reuse as much as possible especially at the higher levels of the ontology.
 - Standard upper level ontology
 - Previously built domain ontologies
- Make what you build reusable

Drug Ontology case study - components

- Upper level ontology reused
- Anatomy and physiology domain ontologies reused and amended.

Construction

- Often split into two tasks
 - Terminology knowledge acquisition
 - Interacting with domain experts
 - Terminology knowledge low-level modelling
 - Expressing knowledge in formal and consistent manner
 - Use a suite of design patterns and methodologies

Drug Ontology case study – knowledge acquisition

- Use an intermediate representation
 - Simpler, less constrained
 - Customised to a domain
 - Authoring tools

Internal testing

- What does the logic give you?
- Logical consistency checked automatically
- Semantic consistency can be assisted by the DL reasoner
 - By classification miss-classification
- Additional tools
 - By query and visualisation missed classification

Case study – internal testing

- Pain classed as a nervous system disease
- Incorrect definition of pain

Evaluation

• Testing of ontology within final application Requirements

• Case study - evaluation

- Problem integrating existing vocabularies.
- Meaning cannot be taken on face value
 - No human to intervene
- Must also explicitly take into account context is which term is used.
 - Reference material versus Patient record

