DAML+OIL Technical Detall

lan Horrocks

horrocks@s. nan. ac. uk

University of Manchester
Manchester, UK

DAML+OIL Technical Detail — p.1/49

Talk Outline

Overview of language design and motivation

Basic features
"I quick review of walkthru

Advanced features
| detalls not (sufficiently) covered in the walkthru

Tricks of the Trade
| getting the most out of DAML+OIL

Limitations
| what it can’'t do

Implementation challenges

DAML+OIL Technical Detail — p.2/49

Overview of Language Design and Motivation

DAML+OIL Technical Detail — p.3/49

Most existing Web resources only human understandable
Markup (HTML) provides
Textual/graphical information for

Semantic Web aims at
markup will be added to web resources

Markup will use for shared understanding
Requirement for a suitable ontology language

Compatible with existing Web standards (XML, RDF)

Captures common KR idioms

Formally specified and of adequate expressive power

Amenable to machine processing
Can provide reasoning support

DAML+OIL language developed to meet these requirements

DAML+OIL Technical Detail — p.4/49

DAML+OIL is an language

Describes of the domain (i.e., a Thox)
RDF used to describe specific (.e., an Abox)
Structure described in terms of and

Ontology consists of set of
E.g., asserting class subsumption/equivalence

Classes can be names or
Various provided for building class expressions

determined by
Kinds of class (and property) constructor supported
Kinds of axiom supported

DAML+OIL Technical Detail — p.5/49

Basic Features

DAML+OIL Technical Detail — p.6/49

Ontology consists of set of , €.79., asserting facts about

<dam :d ass rdf: I D="Aninal "/ >

<dam : d ass rdf: | D="Man">
<rdfs:subC assOF rdf:resource="#Person"/>
<rdf s: subCl assO rdf:resource="#Ml e"/>
</ danl : C ass>

<dam : d ass rdf: | D="Marri edPerson">
<dam :intersectiontO rdf:parseType="danl :collection">
<danl : G ass rdf: about =" #Person"/ >
<dam : Restriction dam :cardinality="1">
<danl : onProperty rdf:resource="#hasSpouse"/ >
</dam : Restriction>
</dam :intersectionO>
</ dam : d ass>

DAML+OIL Technical Detail — p.7/49

Can also assert facts about properties, e.g.:

<dam : Qbj ect Property rdf: |1 D="hasParent"/>

<dani : Uni queProperty rdf: | D="hasMot her">
<rdf s: subPropertyOf rdf:resource="#hasParent"/>
<rdf s:range rdf:resource="#Fenal e"/>

</ dam : Uni queProperty>

<dam : TransitiveProperty rdf:|D="descendant"/>

<dam : Cbj ect Property rdf:I1D="hasChil d">
<dam :inverseX rdf:resource="#hasParent"/>
</ danml : Qbj ect Property>

<dam : Cbj ect Property rdf: | D="hasMni >
<danl : sanePropertyAs rdf:resource="#hasMt her"/>
</ dam : Cbj ect Property>

DAML+OIL Technical Detail — p.8/49

Can use XMLS datatypes and values instead of classes and individuals:

<danl : Dat at ypeProperty rdf: | D="age">
<rdf:type rdf:resource=".../dam +oi | #Uni queProperty"/ >
<rdf s:range rdf:resource=".../XM.Schema#nonNegat i vel nt eger"
</ daml : Dat at ypePr operty>

<xsd: si npl eType nane="over 17">
<xsd:restriction base="xsd: positivel nteger">
<xsd: m nl ncl usi ve val ue="18"/>
</xsd:restriction>

</ xsd: si npl eType>

<dam : A ass rdf: I D="Adul t" >
<dam : Restriction>
<dam : onProperty rdf:resource="#age"/>
<dam : hasCl ass rdf:resource="... #over1l7"/>
</danl : Restriction>
</ danl : C ass>

DAML+OIL Technical Detail — p.9/49

Can also assert facts about individuals, e.g.:

<Person rdf: | D="John"/>
<Person rdf: | D="NMary"/>

<rdf: Description rdf:about="#John">
<hasPar ent : resource="#Mary"/ >
<age>25</ age>

</rdf:Description>

<rdf:Description rdf:about="#John">
<di fferent| ndi vi dual From r esour ce="#Mary"/ >
</rdf:Description>

<rdf:Description rdf:about="#C1nton">

<sanel ndi vi dual As: resource="#Bill i1 nton"/>
</rdf:Description>

DAML+OIL Technical Detail — p.10/49

Advanced Features

DAML+OIL Technical Detail — p.11/49

Constructor DL Syntax Example
IntersectionOf Ci;m...nC, | Human n Male
unionOf Ciu...ud, | Doctor LI Lawyer
complementOf -C —Male
oneOf {z1...z,} | {john, mary}
toClass vVP.C VYhasChild.Doctor
hasClass 1P.C JhasChild.Lawyer
hasValue AP {z} dcitizenOf.{USA}
minCardinalityQ >nP.C >2hasChild.Lawyer
maxCardinalityQ <nP.C <lhasChild.Male
cardinalityQ =n P.C =1 hasParent.Female

XMLS can be used in restrictions

Arbitrary of constructors

E.g., YhasChild.(Doctor LI FhasChild.Doctor)

DAML+OIL Technical Detail — p.12/49

Most basic components of class expressions are
E.g., Person, Bui | di ng

Two (pre-defined) class names:
— class whose extension is whole (object) domain
— class whose extension is empty

They are just “syntactic sugar”
Thi ng = C' u —C for any class C
Not hi ng = —Thi ng

DAML+OIL Technical Detail — p.13/49

Class Expressions: Restrictions

"I Restrictions are classes: class of all objects satisfying restriction

| Basic structure is property plus restrictions on
o type and/or
e number
of objects that can be related to members of class via that property

DAML+OIL Technical Detail — p.14/49

E.g.
<dam : Restriction>
<dam : onProperty rdf:resource="#hasParent"/>
<dam :tod ass rdf:resource="#Person"/>
</dam : Restriction>
class of objects all of whose parents are persons
Analogous universal quantification (V) in FOL

Analogous to box (1) in modal logic

DAML+OIL Technical Detail — p.15/49

Can be seen as local/relativised property
<danl : d ass rdf: about =" #Per son" >
<rdfs:subC assO >
<daml : Restriction>
<danml : onProperty rdf:resource="#hasParent"/>
<dam :toCl ass rdf:resource="#Person"/>
</dam : Restriction>
</rdfs:subd assCO >
</dam : Cl ass>

Conversely, range is like asserting t oCl ass restriction w.r.t. Thi ng

Some “strange” inferences:

instances with no conflicting property assertions may not be
members of class (open world) — c.f. peter

iInstances (provably) without any such property are members of
class — c.f. paul

DAML+OIL Technical Detail — p.16/49

E.g.
<dam : Restriction>
<dam : onProperty rdf:resource="#hasFriend"/>
<dani : hasCl ass rdf:resource="#Republican"/>
</dam : Restriction>
class of objects that have some friend that is a Republican

Analogous existential quantification () in FOL
Analogous to diamond () in modal logic

Individuals with no relevant property assertions may still be members
of class (incomplete knowledge)

DAML+OIL Technical Detail — p.17/49

E.g.
<daml : Restriction>
<dam : onProperty rdf:resource="#hasFriend"/>
<dani : hasVal ue rdf:resource="#N xon"/>
</dam : Restriction>
class of objects that have some friend that is NI xon

Just a special case of hasC ass using oneC
<dam : Restriction>
<dam : onProperty rdf:resource="#hasFriend"/>
<daml : has(ass>
<danml : oneXX rdf: parseType="dani:collection">
<rdf:Description rdf:about="#N xon">
</dam : one) >
</ danl : hasCl ass>
</dam : Restriction>

DAML+OIL Technical Detail — p.18/49

E.g.
<dam : Restriction>
<danl : onProperty rdf:resource="#hasFriend"/>
<dam : m nCardi nal i ty@2</dam : m nCardi nal ity
<dam : hasC assQ rdf: resource="#Republican"/>
</dam : Restriction>
class of objects that have at least 2 friends that are Republicans

Can specify min, max and exact cardinalities
exact is shorthand for max plus min pair

m nCar di nal i t yQis generalisation of hasCl ass, e.g.:
<dam : Restriction dam : m nCardinalityQ1>
<danl : onProperty rdf:resource="#hasFriend"/>
<dam : hasC assQ rdf: resour ce="#Republ i can"/ >
</dam : Restriction>
equivalent to hasCl ass Republ i can.

DAML+OIL Technical Detail — p.19/49

Also exist versions without qualifying concepts, e.g.:
<dam : Restriction>
<dani : onProperty rdf:resource="#hasFriend"/>
<dam : m nCardi nality>3</dam : m nCardi nal i ty>
</dam : Restriction>
class of objects that have at least 3 friends

Same as Q version with qualifying class as Thi ng
<dam : Restriction>
<dam : onProperty rdf:resource="#hasFriend"/>
<dam : m nCardi nal i ty@3</danl : m nCardi nalityQ
<daml : hasC assQ rdf: resource=".../danl +oi | #Thi ng"/ >
</dam : Restriction>

DAML+OIL Technical Detail — p.20/49

cardi nal I ty Restrictions

"I Note that no unique name assumption:

» individual only instance of above class if it has 3 (provably)
different friends

o maxCar di nal i ty restrictions can lead to
sanel ndi vi dual As inferences

DAML+OIL Technical Detail — p.21/49

Syntax allows multiple properties/classes in single restriction
<danml : Restriction>
<dani : onProperty rdf:resource="#hasFriend"/>
<danl : hasCl ass rdf:resource="#hasFriend"/>
<danl : t oCl ass rdf:resource="#Republican"/>
</dam : Restriction>

Result may not be as expected
at least one Republican friend and all friends Republicans
at least one Republican friend iff all friends Republicans

Bottom line: avoid such constructs! — use i nt ersecti onOf 2 (or
more) separate restrictions

DAML+OIL Technical Detail — p.22/49

Class Expressions: Enumerations

Existentially defined classes

| Class defined by listing members, e.g.:
<danl : Cl ass>
<danl : oneX rdf: parseType="dan :coll ection">
<rdf: Description rdf:about="#Iltaly">
<rdf:Description rdf:about="#France">
</ dam : oneX >
</dani : C ass>

DAML+OIL Technical Detail — p.23/49

Strange properties compared to other classes
e.g., cardinality of class is known (2 in the above case)

Powerful/useful but hard to deal with computationally

Can sometimes substitute union of (primitive) classes, e.g.:
<danl : Cl ass>
<dani : uni onOf rdf: parseType="dani :coll ection">
<daml : G ass rdf:about="#ltaly"/>
<dam : d ass rdf: about ="#France"/>
</ dam : uni onCf >
</danl : Cl ass>

but (max) cardinality inferences may be lost

DAML+OIL Technical Detail — p.24/49

Standard boolean constructors (intersection, union, complement)
can be used to combine classes

Boolean constructors are properties not a classes
Class “wrapper” needed for nesting, e.g.:
<danl : d ass rdf: | D="Wnan">
<daml :intersectionO rdf:parseType="dam :collectio
<dam : d ass rdf: about ="#Person"/>
<rdfs: d ass>
<dam : compl enent O rdf:resource="#Mal e"/>
</rdfs:d ass>
</dam :intersectionO>
</dam : C ass>

DAML+OIL Technical Detail — p.25/49

Can use XMLS datatypes and values instead of classes and individuals:

Domain of classes and datatypes considered disjoint
no object can be both class instance and datatype value

Two types of property: Cbj ect Property and Dat at ypePr operty
(bj ect Property used with classes/individuals
Dat at ypePr operty used with datatypes/values

Can use arbitrary XMLS datatypes
built-in (primitive and derived), e.g., xsd: deci nal
user defined/derived, e.g., sub-ranges

Datatypes can be used in restrictions and as range of datatype
properties

Data values can be used in hasVal ue and in RDF “ground facts”

DAML+OIL Technical Detail — p.26/49

Only property operator directly supported isi nver seC

Other operators such as composition (o) and union (L) can
sometimes be expanded out

1(P1o P2).C =4P1.(3P2.C)

V(Plo P2).C =VP1.(VP2.0)

1(P1U P2).C = (3P1.C)U (3IP2.0)

V(P1U P2).C = (VP1.C)N1 (VP2.C)
Can’t capture/expand

Intersection of properties

property expressions (except inverse) in cardinality restrictions,
e.g., <1(P1o P2) — but see “tricks of the trade”

DAML+OIL Technical Detail — p.27/49

Axiom DL Syntax Example

subClassOf C7 C O Human C Animal M Biped
sameClassAs Ci1 =05 Man = Human rn Male
subPropertyOf P C P hasDaughter = hasChild
samePropertyAs P =P cost = price
samelndividualAs {1} = {x2} | {President_Bush} = {G_W_Bush}
disjointWith C7 C =05 Male C —Female
differentindividualFrom | {z1} C ={xzo} | {john} C —{peter}
iInverseOf P, =P, hasChild = hasParent™
transitiveProperty PTCP ancestor™ C ancestor
unigueProperty TCELIP T C <lhasMother
unambiguousProperty TCELIP™ T C <lisMotherOf™

DAML+OIL Technical Detail — p.28/49

Allow facts to be asserted w.r.t. classes/class expressions, e.g.,
equivalence

class axioms can be transformed into subC assO , e.g.:

Cl=C02 +<— CClCC2and(C2LC C1
Cl disjointWth C2 <« C(C1C-=C2

but different forms may be useful for modelling and/or reasoning
Most common axiom is sub/sameClass with name on |.h.s., e.g.:

Tri angl e = Pol ygonn=3hasAngl e.

sometimes called a
can have as many definitions as we like
no way to distinguish “main” definition

DAML+OIL Technical Detail — p.29/49

multiple subClass axioms with same |.h.s. can be gathered together
or separated, e.g.:

CilCC2, (ClC(C3 <<= JCi1Cc2ncCs

but multiple equivalence axioms with same |.h.s. can be
gathered together

In general, both sides can be arbitrary expressions, e.g.:
Pol ygonrn=3hasSi de C =3 hasAngl e

This feature is very powerful and allows many complex
situations to be captured

DAML+OIL Technical Detail — p.30/49

Class Axioms

| subClass axioms can be seen as a form of rule, e.qg.:
Cl(x) «— C2(x) AN P1(x,y) N P2(y,z) A C3(z)

IS equivalent to
C2M3P1.(3P2.C3) C C1

I Synonyms can also be captured by asserting name equivalence,
e.g..
Car = Aut onobi | e

DAML+OIL Technical Detail — p.31/49

No requirement to “define” class before use
But good practice in general (for detecting typos etc.)

Axioms can be directly (or indirectly) cyclical, e.g.:
Per son = dhasPar ent .Per son

Descriptive (standard FOL) semantics — not fixedpoint

DAML+OIL Technical Detail — p.32/49

Allow facts to be asserted w.r.t. properties/property expressions, e.g.:

hasChi | d = hasPar ent ~

Equivalence reducible to subProperty as for classes
Multiple axioms/definitions etc. as for classes

Can also assert that a property is
Useful/essential for part-whole, causality etc.
Easier to handle computationally than transitive closure operator
Can combine with subPropertyOf to get similar effect, e.qg.:

directPartO CpartO andtransitive(partO)

similar to
directPartO *=part X

Can only be applied to object properties

DAML+OIL Technical Detail — p.33/49

Property Axioms

"I Symmetrical not directly supported but easily captured:

hasNei ghbour = hasNei ghbour ~

I Reflexive cannot be captured

DAML+OIL Technical Detail — p.34/49

Range/domain constraints equivalent to toClass restrictions on
property/inverse subsuming Thing:

range(P,C) <= ThingCVPC
domai n(P,C') <= ThingCVP .C

Unigue/unambiguous assertions equivalent to maxCardinality=1
restrictions on property/inverse subsuming Thing:

uni queProperty(P) <= ThingC 1P
unanbi guousProperty(P) <= ThingLC <1P~

Note that these are strong statements
restriction asserted w.r.t. Thi ng

can result in “strange” (unexpected) inferences and/or
compromise extensibility of ontology

almost always better asserted locally (particularly range/domain)

DAML+OIL Technical Detail — p.35/49

Allow facts to be asserted w.r.t. individuals, e.g., type

RDF used for basic type/property assertions (Abox)
<Person rdf: | D="John"/>
<rdf: Description rdf:about="#John">
<hasPar ent : resour ce="#Mary"/ >
</rdf:Description>
John € Per son, (John,Mary) € hasPar ent

l.e.,

Can state same facts using DAML+OIL one , e.g.:
<damnl : cl ass>
<danl : oneX rdf: parseType="danl :coll ection">
<rdf: Description rdf:about="#John">
</ danl : oneX >
<rdfs:subC assO rdf:resource="#Person"/>
</ damnl : cl ass>

DAML+OIL Technical Detail — p.36/49

Datatype properties relate individuals to data values

Data values can be explicitly or implicitly typed, e.g.:
<rdf: Description rdf:about="#John">
<age>25</age>
<t ypedDat a><xsd: real rdf:val ue="3.14159"/></typedDat a:
<unt ypedDat a>1234</ unt ypedDat a>
</rdf:Description>

DAML+OIL Technical Detail — p.37/49

NO unigue name assumption

But can assert equality or inequality of individuals, e.g.:
<rdf: Description rdf:about="#C1inton">
<di fferentl ndi vidual Fromresource="#H || ary"/>
<sanel ndi vi dual As: resource="#Bi |l | i nton"/>
</rdf:Description>

Can again use oneOf to capture such (in)equalities
<danl : cl ass>
<danl : oneX rdf: parseType="dani :coll ection">
<rdf: Description rdf:about="#C1inton">
</ danl : oneX >
<rdf s: saneC assAs rdf:resource="#Bil |1 Cinton"/>
</ danl : cl ass>

DAML+OIL Technical Detail — p.38/49

Slightly strange mixture of classes and properties, axioms and constructors
Restrictions are classes

Enumerations and booleans are properties
implicit saneC assAs axiom, e.g.:
<danml : G ass rdf: | D="NonPerson">
<dam : conpl enent O rdf:resource="#Person"/>
</danl : Cl ass>
have to be “wrapped” in an anonymous
class to combine (e.g., with other booleans) or assert subClassOf
<daml :d ass rdf: I D="Car">
<rdf s: subd assO >
<danml : d ass>
<danl : conpl enent & rdf:resource="#Person"/>
</dam : C ass>
</rdfs:subC assO >
</ dam : CI aSS> DAML+OIL Technical Detail — p.39/49

Some constructors contain hidden axioms
e.g., disjointUnionOf
<dam : Cl ass rdf: about =" #Person" >
<damnl : di sj oi nt Uni onOF rdf : parseType="danl : col | ect |
<dam : Cl ass rdf:about ="#Man"/ >
<dam : Cl ass rdf: about ="#Wman"/ >
</ damnl : di sj oi nt Uni onOf >
</dam : d ass>
includes assertion about disjointness of Man and Wnan

Combined restrictions also hidden axioms

DAML+OIL Technical Detail — p.40/49

Tricks of the Trade

DAML+OIL Technical Detail — p.41/49

Common requirement is to construct class where 2 properties have
same value

e.g., class of “happyPerson” whose spouse is the same
Individual as their best friend

Can achieve something similar using subPropertyOf and
cardinality restrictions:

hasSpouse LC hasSpouseOr Best Fri end
hasBest Friend C hasSpouseOr Best Fri end
happyPerson C =1hasSpousern=1hasBestFriend

r<lhasSpouseOr Best Fri end

Note that all the properties must be locally unique
Can also define bespoke part-whole hierarchy

DAML+OIL Technical Detail — p.42/49

one is powerful

E.g., can be define so called “spy-point”
connected via some property to every object in domain

Thi ng C dP.{spy- poi nt }

Combined with inverse can be used to fix (min/max) cardinality of
domain, e.g.:

{spy-point } C <15P

DAML+OIL Technical Detail — p.43/49

General axioms (expressions on |.h.s.) are very powerful
Can capture (some kinds of) rules, e.g.:

period=I|ateGeorgian <« culture=>Dbritish
A date = 1760-1811

can be captured as an axiom:

dcul ture.british
1ddat e.1760-1811 C dperi od.l at eGeorgi an

Can be computationally expensive
should relitavise as much as possible
e.g., above axiom only relevant to furniture

DAML+OIL Technical Detail — p.44/49

Other Useful Constructions

I Localised range/domain

C CVPD
Cnzl1PC D

I Localised unique/unambiguous

CC<IP
C CVYP.(<1P17)

DAML+OIL Technical Detail — p.45/49

Limitations

DAML+OIL Technical Detail — p.46/49

DAML+OIL has many limitations, mostly designed to maintain
decidability/computability/well-definedness

Limited property constructors
e.g., ho composition, transitive closure, product, ...

Limited property types
transitive and symmetrical, but not reflexive

Only collection type is set
e.g., no bags, lists

Only unary and binary relations

Restricted form of quantification (modal/guarded fragment)
No comparison or aggregation of data values

No defaults

No variables (as in hybrid logics)

DAML+OIL Technical Detail — p.47/49

Implementation challenges

DAML+OIL Technical Detail — p.48/49

Even with existing language, challenges remain for would-be implementors

Reasoning with oneOf is

decidable (contained in the C2 fragment of first order logic) but
complexity increases from EXPTIME to NEXPTIME

no known “practical” algorithm

Scalability
class consistency in EXPTIME even without oneOf
Inverse properties cause particular difficulties
web ontologies may be

Other reasoning tasks

Querying
Explanation
LCS/matching

DAML+OIL Technical Detail — p.49/49

	Talk Outline
	Overview of Language Design and Motivation
	DAML+OIL: a Semantic Web Ontology Language
	DAML+OIL Language Overview
	Basic Features
	Classes and Axioms
	Properties
	Datatypes
	Individuals
	Advanced Features
	Overview of Class Expressions
	Class Names
	Class Expressions: Restrictions
		exttt {toClass} Restrictions
		exttt {toClass} Restrictions
		exttt {hasClass} Restrictions
		exttt {hasValue} Restrictions
		exttt {cardinality} Restrictions
		exttt {cardinality} Restrictions
		exttt {cardinality} Restrictions
	RDF Syntax
	Class Expressions: Enumerations
	Class Expressions: Enumerations
	Class Expressions: Booleans
	Datatypes
	Property Expressions
	DAML+OIL Overview: Axioms
	Class Axioms
	Class Axioms
	Class Axioms
	Class Axioms
	Property Axioms
	Property Axioms
	Property Axioms
	Individual Axioms
	Individual Axioms
	Individual Axioms
	RDF Syntax
	RDF Syntax
	Tricks of the Trade
	Using Property Hierarchy
	Inverse and oneOf
	General Axioms
	Other Useful Constructions
	Limitations
	What It Can't Do
	Implementation challenges
	Implementation challenges

